Irwin Deng


2025

pdf bib
Enhancing Temporal Understanding in LLMs for Semi-structured Tables
Irwin Deng | Kushagra Dixit | Dan Roth | Vivek Gupta
Findings of the Association for Computational Linguistics: NAACL 2025

Temporal reasoning over tabular data presents substantial challenges for large language models (LLMs), as evidenced by recent research. In this study, we conduct a comprehensive analysis of temporal datasets to pinpoint the specific limitations of LLMs. Our investigation leads to enhancements in TempTabQA, a benchmark specifically designed for tabular temporal question answering. We provide critical insights for enhancing LLM performance in temporal reasoning tasks with tabular data. Furthermore, we introduce a novel approach, C.L.E.A.R to strengthen LLM capabilities in this domain. Our findings demonstrate that our method improves evidence-based reasoning across various models. Additionally, our experimental results reveal that indirect supervision with auxiliary unstructured data (TRAM) substantially boosts model performance in these tasks. This work contributes to a deeper understanding of LLMs’ temporal reasoning abilities over tabular data and promotes advancements in their application across diverse fields.