
Parsing Generalized Phrase Structure
Grammar with Dynamic Expansion

Navin Budhiraja
Subrata ttitra
Harish Karnick
Rajeev Sangal

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

Kanpur 208 016 India

SUHMARY
A parser is described here based on the Cocke-Young-Kassami
algorithm which uses immediate dominance and linear precedence
rules together with various feature inheritance conventions. The
meta rules in the grammar are not applied beforehand but only
when needed. This ensures that the rule set is kept to a minimum.
At the same time, determining what rule to expand by applying
which meta-rule is done in an efficient manner using the met a
rule reference table. Since this table is generated during
"compilation” stage, its generation does not add to parsing
time.

1 INTRODUCTION
GPSG as introduced by G a z d a r •e t .a l . gives a formalism to parse
natural languages assuming they are context free. The phrase
structure rules are like the normal CFG rules, except that
features are added to the categories. These features are used by
Feature Co-occurence Restrictions, Feature specification
Defaults, Head Feature Convention, Foot Feature Principle and
Control Agreement Principle, during parsing.

The second important feature of GPSG, and towards which this
paper is mainly directed, is the metarule. A major problem of a
complete natural language grammar is its size, which causes
difficulties as far as memory requirements and efficiency of any
practical parser are concerned. GPSG tries to overcome this,
partly, by keeping the rule set to the minimum. In addition to
the minimal set of rules, it has certain metagrammatical
structures to generate rules from the previously defined minimal
set. Thus the number of rules at any time are the minimum
possible, reducing the search time of the parser. In addition,
this captures certain linguistic generalisations (e.g. active-
passive) .

Lastly GPSG goes to the thematic representation directly from the
c-structure (in contrast to other formalisms like LFG). The IL
formula is built up as parsing proceeds.

Our endeavour is, thus, to build a natural language parser

-458- Intemational Parsing Workshop '89

incorporating all of the above. Ue describe the parser in the
sections that follow.

1.1 EXISTING PARERS AND OUR APPROACH

All the implementations of GPSG reported in the literature use a
rather straight forward approach of first expanding the entire
rule set by using the available metarules, in the process
augmenting the set of rules, and finally the normal context free
parser is run on this new set of rules.

Thus there are two basic steps involved :-

1. Rule expansion using the available metarules
2. Actual parsing using the expanded set of rules.

It should be noted that in such an implementation one does not
need to bother about the metarules after the first stage.

An inherent drawback with this approach is that if the initial
set of rules is of sizeable cardinality, then a number of rules
may get added to the set, (a large number of these rules may
never get used during the actual parse of a sentence), thus not
only causing memory storage problems, but also slowing down the
system considerably.

The main motivation of this paper is to describe a method for
parsing GPSG without initial expansion (i.e. our implementation
expands metarules as and when necessary). Further, in our-
implementation we have assumed in ID-LP format for the rules,
thus making them more compact.

Because of the above reasons, it has become necessary to make
some changes to an ordinary context-free parsing algorithm to
suit our requirements (i.e. to incorporate dynamic expansion and
the ID-LP format of rules).

2 PARSING ALGORITHM
The essential characteristics of our approach towards a solution
of the problem has been listed over the next few pages.

2.1 DYNAMIC STRUCTURE OF RULES
As has been mentioned earlier, our implementation gets new rules
from old ones as the parsing proceeds. Under such a situation,
it becomes necessary to suspend parsing temporarily, only to
return to it after a rule of the appropriate type has been
generated by expanding sing one or more metarules some
appropriate rule from the already available set.

At this stage a decision has to be taken as to whether the
rule which was recently derived should be stored for further use
or should be discarded. Here the choice should be guided by the

-459- International Parsing Workshop '89

relative gain in time by s t o r i n g the rule (as o p p o s e d to re-
expanding) against the storage overhead. The type of sentences to
be parsed may also play a role in this decision. For example, it
may be worthwhile to store the rule which gets generated during
parsing. Equivalently the other approach may be tried.

For this type of implementation, metarules become in important
part of parsing. Further justification on this issue is given in
the next section.

2.2 TABLE BUILDING

Ue have seen in the previous section that an important aspect of
our parser implementation is the generation of rules at an
intermediate stage.

A native way to tackle the problem would be to go over the entire
set of rules and metarules when a failure occurs, and try each
metarule-rule combination to find one which produces a rule of
the required type, and then carry on with the parser. But this
will obviously be highly inefficient.

To cut down the time of generating rules and trying them out, a
table can be constructed to help us select the metarule-rule
combination. This is what is done.

In the first stage (called the metarule compilation stage) we go
over all the r u 1e-met a r u 1e combinations to build up a reference
table which can be consulted by the parser (during the second
stage) to get the required rules efficiently. Compilation is a
one time job and, therefore, does not affect the complexity of
the actual parser.

The rule set can be structured for faster access to the relevant
rules. In our current implementation we have structured the rule
set on the basis of the number of categories (non-terminals) on
the right-hand-side (rhs henceforth).

The metarule reference table is built up in the compilation stage
as folIowa :-

1. For each rule r do the following.
2. Store the rule in the appropriate entry of a new table

called the RULE TABLE, which is the one that the parser
refers to. (For our case store it with all other rules
which have the same number of rhs c a t e g o r i e s) .

3. For each metarule m that can be applied on r do
3.1 apply m on r yielding a new rule s
3.2 hash the rhs categories of the newly produced rule s to

get an index into another table called the HETA-REFERENCE
table.

3.3 Build up a meta reference entry as follows
(a) Get index (here number of rhs categories) of the input

rule r. Let this be II.

-460- International Parsing Workshop '89

(b) Get the position of the current rule in the rule table
corresponding to II. Let this be 12.

(c) Get the position of the current metarule m in the
metarule list. Let this be HI.

3.4 Now append the triplet (II 12 Ml) to the contents of
the meta reference table entry pointed to be the index
found in step 3.2 above.

The above takes care of cases where one level of expansion of
metarules is sufficient. But in general a rule could be expanded
successively more than once by the same or by different metarules
before it can be used for parsing. Thus it is necessary to
extend the meta-reference entries to handle the problem.

Basically a triplet (II 12 HI) as defined above corresponds to a
rule which is produced by applying metarule Ml to the 12th.
entry in the Ilth. sub-structure of the rule table. Let the
resultant rule be Rl. Now R1 may expand some metarule whose
position is M2 to produce a rule R 2 , and so on, until at some
stage we get a rule Rn which is not meta expandable any further.
The termination is guaranteed because GPSG is equivalent in power
to CFG.

In the compilation stage we must now make entries in the met a
reference table for each of R l ... R n , because any of them may be
necessary during parsing. This can be done as follows:-

R1 is the rule corresponding to (II 12 Ml)

For i : = 1 to n do
Ri is Hi applied on R(i-l),

Get an index to the meta-reference table using rhs
categories of Ri

To this entry append ((II 12 Ml) M 2...Mi)
Here Ml,M2...,Mi gives the successive position in the metarule
list of the metarules to be applied.

An example will clarify the situation:
consider a metarule of the form

(VP--> U N P)====>(VP--->U (optional(PP[by])}).
where U is any set of categories.
This generates the passive counterparts of active sentences.

Now if we have a rule of the type
0 . .VP--> V NP NP,

/* The features etc. have been omitted for simplicity * /
after first expansion we shall get two rules, namely:

1..VP--> V NP,
2..VP--> V NP P P .

Further, because of the given structure of the intermediate rules
and the metarules under consideration, a second expansion is
possible. Consider the rule V P — > V NP PP (rule 2 above). Uhen
the above metarule is expanded using this rule, we get the

-461- International Parsing Workshop '89

f o l l o w i n g p a i r of r u l e s

3 . . V P - - > V PP
4 . . VP - - > V PP PP

Similarly the rule VP --> V NP (rule 1 above) will generate two
rules of the form:

5 . . VP - - > V
6 . . VP - - > V PP

Now since none of the newly generated rules are meta-expandable
the process will stop. The meta referencea table entries will be
of the following nature :

/* Let us assume that there is just this one metarule in the meta
list, and that the initial rule (rule 0 above) is the only one
present in the rule array corresponding to length of rhs
t h r e e , i .e,

11 is 3
12 is 1, and
Ml is 1

* / (a) Corresponding to rhs <V,NP,PP> and <V,NP> we
shall have entries of the type ((3 1 1)),while
(b) Corresponding to any other possible collection

of rhs categories, for example <V,PP>, the entry
will look like ((3 1 1) 1), which incorporates two
levels of meta expansion.

A point of importance is that since one expansion of a
metarule can produce more than one output rule (e.g.
rules (1) & (2) from rule (0) above) the meta expander must
check for category names before returning the generated rule.

For example if meta expansion is called with parameters (V,NP)in
the above situation, then only rule (1) should be returned, the
other has to be discarded .

Another change could be incorporated regarding the structuring of
the set of input rules. One can use a hashing technique similar
to the one used for storing meta reference entries. Thus, rules
would be stored not by the number of rhs categories, but hashed
according to the categories present in the rhs. This would make
rule access at parse time much faster and direct because during a
bottom-up parse we have to reduce a given set of rhs categories
into the corresponding left hand side. This would however mean
keeping more entries in the rule table.

2.3 THE PARSING ALGORITHM

The parsing algorithm we have used is the well known Cocke-Young-
Kassami (CYK) algorithm, with a few modifications. The
differences are for the following requirements. Ue have to :

-462- International Parsing Workshop '89

1) make the algorithm work for an ID/LP grammar,
2) make the algorithm work for grammars not in Chomsky Normal

Form (C N F),
3) allow for meta-rule expansion during parsing

Ue discuss these one by one.

1) In order to handle ID/LP grammars, we have to just look for a
rule with the required nonterminals on the right hand side, with
no importance attached to the order (except of course,for
precedence relations)

2)In order to account for grammars which are not in CNF, we had
to increase the nesting of the loops which handle rules of the
form

A ---- > BI B2
in the CYK algorithm. The loop depth should now be (k-1) in
order to handle rules like

A ---- > BI B2 . . .Bk
(See algorithm extract given below)

3) In order to get new rules from the old, we have to make some
additions to the CYK algorithm. A part of the algorithm is given
below :-
/ *

The algorithm to handle grammars not in CNF and to
allow for metarule application during parsing is
shown below. This handles all rules which have k
nonterminals on the right hand side.

* /
procedure 1 e ngth_k(i ,j) ;
begin

for al := 1 to j-k+1 do
for bl := 1 to j-al-k+2 do

for cl := 1 to j-al-bl-k + 3 do

for jl := 1 to j - a l-bl-cl...-il-k+j do
RULESET := RULESET U { new rules obtained by

expanding the metarules
as required by the
parser }

/* it is in the above line that we get the new
set of rules as demanded by the parser */

CYK(i.j) :=
C Y K (i ,j) U <A | A ---- > B 1 B 2 ...Bk

is a production, and
Bl is in C Y K (i ,a l) ,
B2 is in CYK(i+al,bl)

Bk is in C Y K (i+ a l + b l . . . + j 1 ,

-463- Intemational Parsing Workshop '89

e n d ;
j - a l - b l . . . - j 1) }

As can be seen from the algorithm extract given above, the m e t a
rules are expanded here. Once we have the required RHS
(B 1 ,B 2 ...B k), it is hashed to a value in the meta-rule reference
table which returns us a triplet of the form (II 12 HI) where

11 stands for the index of the rule-table i.e the table
which contains all the rules according to the number of
right hand sides they have.

12 stands for the number of the rule in the II entry of the
rule index table

HI stands for the number of the metarule which needs to be
used.

Ue discuss an example to illustrtate the algorithm.

Example: In the parsing of the sentence

A mango was given to Sita by Ram

the rule

VP — > V PP[pform to] PP[pform by] ---(1)
is r equir e d .

NP VP
/ \

a mango
V

was

g i v e n ' to' Sita by Ram

Initially we only have the rule

VP --> V NP PP --- (2)
and the meta rule

VP -->U NP ===>

VP[vform pas] ---> U(PP[pform by]) --- (3)

Suppose (V PP PP) hashes to 20. Also assume that the meta rule
(3) is the first meta rule in the meta rule list and rule (2) is
the fourth rule in the rule list which contains all rules which

-464- International Parsing Workshop '89

have three right hand sides. Now when the parser sees that it
requires a rule containing V PP PP (as in (1)) it makes the
following c a l 1

(return-meta-expanded ’(V PP PP))

The triplet that is obtained from the table lookup is (3 4 1)
which calls the meta rule expander to apply (3) to (2) which
returns (1). The parser then continues its normal course after
adding the generated rule to the appropriate rule-list.

2.4 THE SYSTEM STRUCTURE
The block structure of the compiler and parser is given below

with the dotted-line separating the two. The part above the
dotted line is done only once when the grammar is "fed” in.
First the rules specified by the grammar designer are stored in
an appropriate data structure. The compiler then applies the
various feature restriction principles to this rule set (similar
to the Edinburgh approach described in Philips (86)), makes the
feature bindings and then indexes them according to the number of
categories on the right hand sides. In addition it also creates
the all important Meta-rule reference table. Both these tables
are then passed to the parser which then, using the lexicon,
works as described before.

R u l e s / £>a t t a

N \ £ T A R U L E S STRviC .

r --

R u l e t a s l e M 6 T A R u l e

e r e hJCfc

T A & L E

L 6 * I C O N

-465- International Parsing Workshop '89

2.5 HANDLING FEATURE RESTRICTIONS

The heart of GPSG is made up of the set of <feature, feature-
value> pairs associated with every syntactic category. GPSG
introduces some rule and conventions to associate values with
these features in required manner.

Some of these restrictions should cause values to be given to
features during actual parsing of a sentence, while others should
pass up the tree certain feature values which get instantiated at
parse time to ensure a valid parse.

Our implementation handles such problems at the compilation stage
by considering fully expanded categories, where feature values
corresponding to a particular feature which is as yet
uninstant iat ed are bound to a unique variable, and the variable
is shared among all instances of the same feature in the rule,
which have to be bound tc e t h e r . This approach is similar to the
Edinburgh parser.

Later, during the actual parse, if any variable gets bound to a
value, then all other instances of the same variable in the rule
also get the same value. Any mismatch leads to rejection.

For example, in the rule

A ---> B 1 , B 2 . . . Bk

the variable valued features in A get bound to their values as
instantiated in Bl,B2...Bk. Ue are assuming that the RHS of a
rule is fully instantiated during the parse i.e once a category is
added to the CYK table, no more features are added to it. This
approach has forced us to use multiple entries in the lexicon.

For example, the entry for ’t h e ’ contains two entries, one each
for singular and plural respectively.

3 SEMANTICS

The IL formula for the input sentence is built up as the parsing
proceeds. Each node in the parse tree being built contains the
IL formula of the node. Using the type information and the
Semantic Interpretation Schema, the IL formula of the mother is
built up from the IL formulae of its children. Finally the node
S (the start symbol) contains the IL formula of the input
sentence. After parsing finishes, transformations as required by
GPSG (e.g. the passive-active transformation, paraphrases etc.)
are applied to the IL formula of the root.

4 CONCLUSIONS

The parser described here uses immediate dominance and linear
precedence rules together with various feature inheritance
conventions. The meta rules in the grammar are not applied

-466- International Parsing Workshop '89

beforehand but only when needed. This ensures that the rule set
is kept to a minimum. At the same time, determining what rule to
expand by applying which meta-rule is done in an efficient manner
using the meta-rule reference table.

The Cocke-Young-Kassami algorithm has been modified to work
on the context free grammar without converting it to Chomsky
Normal form. Conversion would l*ad to an increase in number of
rules, and would also affect the dominance relationships. The
modified algorithm continues to be a polynomial time algorithm on
the length of the input sentence.

The implementation of the parser has been tested with a
small grammar and with a small number of meta rules. To get
performance figures, it needs to be tested more extensively.
Experiments can also be conducted regarding when the generated
rules should be stored for future use and when they should be
d i s c a r d e d .

Our parser, at the moment, does not have the Kleene Closure
facility to handle conjunctive/disjunctive sentences. It is a
simple matter, however, to add this.

ACKNOWLEDGEMENT

Insightful Suggestions by Vineet Chaitanya and B.N. Patnaik thro-
-ughout the course of this work are gratefully acknowledged.

REFERENCES

[1] Allwood et.al., Logic in Linguistics, Cambridge University
P r e s s , 1977.

[2] Dowty et.al., Introduction to Montague Semantics, D. Reidel,
1981 .

[3] Gazdar, G., Klein, E., Pullum, G.K., and Sag, I.A.,
Generalized Phrase Structure Grammar, basil Blackwell, 1985.

[4] Gazdar, G., Phrase Structure Grammar, in The Nature of
Syntactic Representation, P. Jacobson and G.K. Pullum
(eda.)' D. Reidel, 1982.

[5] Mitra, S. and Budhiraja, N . , A Parser for Generalized Phrase
Structure Grammar, B.Tech. thesis, Dept, of Computer Sc.
and Engg., I.I.T., Kanpur, 1988.

[6] Phillips, J.D., and Thompson, H.S., A Parser for Generalized
Phrase Structure Grammar, Res. Paper 289, Dept. of
Artificial Intelligence, University of Edinburgh, 1986.

[7] Shieber, S.M., Direct Parsing of ID/LP Grammars, Linguistics
and Philosophy, 7,2.

-467- Intemational Parsing Workshop '89

