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Abstract

We show that text readability prediction
improves significantly from hard param-
eter sharing with models predicting first
pass duration, total fixation duration and
regression duration. Specifically, we in-
duce multi-task Multilayer Perceptrons
and Logistic Regression models over sen-
tence representations that capture various
aggregate statistics, from two different text
readability corpora for English, as well as
the Dundee eye-tracking corpus. Our ap-
proach leads to significant improvements
over Single task learning and over previ-
ous systems. In addition, our improve-
ments are consistent across train sample
sizes, making our approach especially ap-
plicable to small datasets.

1 Introduction

When we read, our eyes move rapidly back and
forth between fixations. These movements are
called saccades. The distribution of fixations and
saccades can provide us with important insight
about the reader and the text being read. For exam-
ple, long regressive eye movements, which typi-
cally involve regressing more than 10 letter spaces
(Rayner, 1998), may indicate that the reader is fac-
ing some difficulty in understanding the text (Fra-
zier and Rayner, 1982; Rayner, 2012). In addi-
tion, regressions have been shown to occur dur-
ing the disambiguation of a sentence (Frazier and
Rayner, 1982). This relationship between text and
eye movements, has led to an influx of studies in-
vestigating the use of eye tracking data to improve
and test computational models of language i.e.
Barrett et al. (2016); Demberg and Keller (2008);
Klerke et al. (2015). In this study we aim to in-
corporate eye movement data for the task of auto-

matic readability assessment. Automatic readabil-
ity assessment is the task of automatically label-
ing a text with a certain difficulty level. An accu-
rate and robust system has many potential applica-
tions, for example it can help educators obtain ap-
propriate reading materials for students with nor-
mal learning capacities, as well as students with
disabilities and language learners. It can also be
used to assess the performance of machine trans-
lation, text simplification and language generation
systems. Eye-tracking data has previously been
used to evaluate readability models (Green, 2014;
Klerke et al., 2015), however, our main contribu-
tion is to explore the way that eye tracking data can
help improve models for readability assessment
through multi-task learning (Caruana, 1997) and
parser metrics based on the surprisal theory of syn-
tactic complexity (Hale, 2001, 2016). Multi task
learning allows the model to learn various tasks in
parallel and improve performance by sharing pa-
rameters in the hidden layers.

The work most related to ours is by Singh et al.
(2016), who used eye tracking measures taken
from the Dundee corpus in order to predict word
by word reading times for each sentence. Sub-
sequently, they used these word by word read-
ing times as features for predicting readability.
The two tasks were performed separately, and
their feature representations were different from
the ones presented here. In contrast, we present a
model that predicts gaze and sentence-level read-
ability simultaneously.

We use gaze data from the Dundee cor-
pus (Kennedy et al., 2003) and two different
datasets for the readability prediction task: aligned
Wikipedia sentences used for the task of text sim-
plification by Coster and Kauchak (2011) and the
OneStopEnglish dataset used by Vajjala and Meur-
ers (2014).
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Contributions This is, to the best of our knowl-
edge, the first application of multi-task learning to
readability prediction. Our model is also different
from previous applications of multi-task learning
to natural language processing in that we combine
a classification task and a regression task. We ex-
periment with two multi-task learning algorithms,
namely hard parameter sharing for multi-layered
perceptrons (Caruana, 1997) and a novel approach
to hard parameter sharing between logistic and lin-
ear regression. We evaluate our models on Simple
Wikipedia and the OneStopEnglish corpus. Fi-
nally, we present learning curves that show that
the improvements are robust across different sam-
ple sizes.

2 Experiments

Data Our target task is sentence-level readabil-
ity prediction, i.e. a binary classification problem
of sentences into easy-to-read and hard-to-read.

Our main corpus is a sentence-aligned cor-
pus of 137,000 simple versus normal English
sentences from Wikipedia (Coster and Kauchak,
2011). Similar datasets have been used in the past,
e.g., in Ambati et al. (2016) and Hwang et al.
(2015). The easy-to-read sentences were taken
from Simple Wikipedia and paired with sentences
from the standard Wikipedia using cosine similar-
ity.

In addition, we also evaluate our models on
the OneStopEnglish corpus (Vajjala and Meurers,
2014), specifically the elementary-intermediate
and elementary-advanced sentence pairs. This
dataset has been used for readability assessment
(Vajjala and Meurers, 2014) using the WeeBit
model presented by (Vajjala and Meurers, 2012),
so we compare our results with theirs.

Feature representation In this study, features
known to affect the complexity of text, such as
syntactic, lexical and total surprisal (Hale, 2001;
Demberg and Keller, 2008), were used. Most of
these features were extracted using a probabilis-
tic top-down parser introduced by Roark (2001).
After removing duplicate sentences and sentences
with typos, the final corpus used was of about
80,000 sentence pairs. The features extracted are
shown in table 1.

The prefix probability of word wn is explained
by Jelinek and Lafferty (1991) as the probability
that wn occurs as a prefix of some string generated
by a grammar. It is the sum of the probabilities of

Features
1. Prefix probability -word1
2. Total surprisal - word1
3. Syntactic Surprisal -word1
4. Lexical Surprisal - word1
5. Ambiguity - word1
6. Prefix probability -word2
7. Total surprisal - word2
8. Syntactic Surprisal - word2
9. Lexical Surprisal - word2
10. Ambiguity - word2
11. Total surprisal – sent mean
12. Syntactic Surprisal – sent mean
13. Lexical Surprisal – sent mean
14. Ambiguity – sent mean
15. Total surprisal – sent sd
16. Syntactic Surprisal – sent sd
17. Lexical Surprisal – sent sd
18. Ambiguity – sent sd
19. Sentence length
20. Ave. Word length
21. Parse Tree height
22. Num of Subordinate clauses(SBARs)
23. Num of Noun phrases
24. Num of Verb phrases
25. Num of Prepositional phrases
26. Num of Adv phrases
27. Ratio nouns
28. Ratio verbs
29. Ratio adjectives
30. Ratio pronouns
31. Ratio adverbs
32. Ratio Det
33. Mean Age of Acquisition

Table 1: Features extracted for the readability
data.

all trees from the first word to the current word.
Surprisal is then the difference between the log of
the prefix probability of wn and wn−1.

If we describe D(G,W [1, n]) as the set of all
possible leftmost derivations D with respect to
probabilistic context free grammar G and whose
last step used a production with terminal Wn.
We can then express the prefix probability of
W [1, n] with respect to G as PPG(W [1, n]) =∑

D∈D(G,W [1,n]) ρ(D), where ρ(D) is the proba-
bility of the derivation of a certain tree.

The total surprisal of Wn is then defined as:

SG(Wn) = − log
PPG(W [1, n])

PPG(W [1, n− 1])

Syntactic surprisal and lexical surprisal are calcu-
lated to account for high surprisal scores (Roark
et al., 2009). As Roark et al. (2009) mentions, a
word may surprise because it is unconventional,
or because it occurs in an unusual context.

In order to separate the lexical and syntactic
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components of surprisal, the incremental parser
calculates partial derivations immediately before
word Wn is integrated into the syntactic structure.
Syntactic surprisal (SynSG(Wn)) is defined as:

− log

∑
D∈D(G,W [1,n]) ρ(D[1, |D| − 1])

PPG(W [1, n− 1])

and lexical surprisal (LexSG(Wn)) as:

− log
PPG(W [1, n])∑

D∈D(G,W [1,n]) ρ(D[1, |D| − 1])

Where D[1, |D| − 1] is the set of the partial
derivations before each word is integrated into the
structure D(G,W [1, n]). Total surprisal turns out
to be sum of syntactic surprisal and lexical sur-
prisal.

We also obtain an entropy score using the
parser. Entropy over a set of derivations D, de-
noted as H(D), quantifies the uncertainty over the
partial derivations. We call this feature Ambiguity,
defined as:

−
∑
D∈D

ρ(D)∑
D′∈D ρ(D′)

log
ρ(D)∑

D′∈D ρ(D′)

Furthermore, features corresponding to the first
and second words were included, as the initial
words in a sentence allow the reader to make pre-
liminary guesses of what the structure will be for
the rest of the sentence, although these predic-
tions can often turn out to be wrong. In addition,
mean syntactic scores and standard deviations for
all words in the sentence are included as features.
We also include the mean age of acquisition for the
words in a given sentence, using data from Kuper-
man et al. (2012). Finally, we include basic counts
and ratios used previously in readability prediction
such as sentence length, parse tree height, num-
ber of SBAR’s, noun phrases, verb phrases, among
others .

In order to predict gaze, we extract the features
seen in Table 1 from the Dundee corpus. As men-
tioned earlier, these features offer a good repre-
sentation of cognitive load, which is also reflected
in reading times. A feature vector of size 33 was
built for each sentence, and this information was
used in order to predict an average first pass du-
ration, regression path duration and total fixation
duration.

First pass duration refers to the sum of all fix-
ations on a region once the region is first entered
until it is left. Regression path duration includes
regressions made out of a region prior to moving
forward in the text and total fixation duration is
the sum of all fixations in the region including, re-
gressions to that region. As mentioned in Rayner
et al. (2006), these measures typically concern re-
search questions focusing on sentence or discourse
processing.

Logistic/linear regression and MLPs Logistic
Regression (LR) models have been widely used in
document level readability classification i.e. Feng
et al. (2010) and (Xia et al., 2016). LR models
are linear models and can be thought of as single-
layer perceptrons with softmax or sigmoid activa-
tion functions. The objective is typically to mini-
mize a cross-entropy loss function. The same ar-
chitecture can be used for linear regression, how-
ever, when trained to minimize mean squared er-
ror. Here, we compare LR with a 3-layered Multi
Layer Perceptron (MLP). For our MLP architec-
ture, we use sigmoid activation at the input and
output layers and use ReLu activation in the hid-
den layer. The hidden layer contains 100 neu-
rons. All models presented here use the Adam op-
timizer, and a drop-out rate of 0.5. We also use
Adam to learn logistic and linear regression mod-
els.

As already mentioned, we go beyond single-
task LR and MLP models and present two
multi-task learning architectures with heteroge-
neous loss functions (cross-entropy and minimum
squared error). In multi-task learning (Caruana,
1997), the training signals of one task are used as
an inductive bias in order to improve the general-
ization of another task. Specifically, we use the
the task of gaze prediction in order to improve the
generalization of readability prediction.

Multi-task MLP Our multi-task learning archi-
tecture is identical to that of Caruana (1997) and
Collobert et al. (2011), i.e., two MLPs that share
all parameters in their hidden layers. The only
difference is that one of the MLPs in our case is
trained to minimize a minimum squared error to
predict gaze statistics.

Multi-task logistic and linear regression Our
linear multi-task learning model is novel in that it
combines a logistic and a linear regression model
by tying their parameters. As mentioned earlier,
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LR models can be thought of as single-layer per-
ceptrons. We tie a single-layer perceptron with
sigmoid activation to another single-layer percep-
tron with linear activation by sharing their single
layer and giving a higher weight to our main task.
While this is in fact a simpler model than the deep
multi-task learning model above, this model has,
to the best of our knowledge, not been suggested
before, and in many ways, it is surprising that it
works.

Baselines Ambati et al. (2016) obtained 78.87
percent accuracy on the Wikipedia dataset. They
use features extracted from a Combinatory Cate-
gorical Grammar (CCG) parser. We also compare
our results to Vajjala and Meurers (2014), who
use their WeeBit model in order to predict read-
ability at the sentence level. In addition, for the
Wikipedia dataset, we include the best results from
Singh et al. (2016) as it is the study most related
to ours.

3 Results

Our results are shown in Table 2.
For the Wikipedia corpus, our best multi-task

learning system shows an improvement in accu-
racy over previous work by about 8%. A big part
of the improvement can be attributed to using a
deep learning architecture. Single-task MLPs do
about 8% better than logistic regression on this
dataset, in absolute numbers. Multi-task learning
buys us another .5%, absolute. For the advanced-
elementary sentence pairs in the OneStopEnglish
corpus, a slightly larger improvement is seen from
multi-task learning to single-task. For all multi-
task systems, there is an improvement over the
corresponding single-task system with at least two
of the gaze inputs. The best result was achieved
using Multi-Task MLP. Inclusion of gaze data im-
proved our results about 2.6 % over the best single-
task result.

We performed various paired T tests in order
to assess whether or not the improvements ob-
tained using multi-task learning was significant.
We compared the results of each MTL model to
its corresponding STL model. We report p values
using asterisks in Table 2. P values smaller than
0.001 are described using ***, ** indicate p val-
ues ranging from 0.001 to 0.01 and p values from
0.01 to 0.5 are shown with *. No asterisk indicates
that there was no statistically significant changes.

SYSTEMS WIKIPEDIA OSE (A-E) OSE (I-E)

PREVIOUS

Singh 75.21 - -
Ambati 78.87 - -
Vajjala 66.00 61.0 51.0

SINGLE-TASK

LR 78.17 67.23 58.72
MLP 85.95 67.53 59.30

MULTI-TASK LR

1st pass 78.20 67.88 60.71***
Regression 78.15 68.10* 59.68
Total fix 78.60* 68.08** 60.80**

MULTI-TASK MLP

1st pass 86.13 68.08 *** 61.70 ***
Regression 86.11 67.66 61.91***
Total fix 86.45*** 68.51 *** 61.27 ***

Table 2: Accuracy for all models. Most results
obtained using MTL-MLP yield statistically sig-
nificant improvements of STL-MLP (p < 0.001).

4 Discussion

Performance of features The features extracted
using the probabilistic top down parser have previ-
ously been used in order to predict word by word
reading times (Singh et al., 2016; Demberg and
Keller, 2008), but have not been thoroughly ex-
plored in the task of readability prediction. Here,
we used surprisal and entropy, along with other
low-level features in order to predict the reading
level of single sentences. Using the STL-MLP, we
predicted readability using feature groups, sepa-
rated by syntactic features and low level features.
Our syntactic features include features 1-18, while
our low level features are 19-33 in table 1. We
found that low level features are more predictive
for our datasets than syntactic features, however,
it is a combination of both that yields the best re-
sults. These results can be seen in table 3.

Feature Set Wikipedia OSE I-E OSE A-E

Syntactic Features 60.35 54.90 59.79
Low level Features 78.15 57.30 65.17
All Features 85.95 59.30 67.53

Table 3: Accuracy when predicting readability us-
ing features in groups. The results show, that a
combination of both sets of features provide the
best result.

In addition, we performed a single feature eval-
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uation, where each feature was used to predict
readability using the STL-MLP model. The 10
most predictive features for the Wikipedia dataset
are presented in table 4. The results reaffirm the
previous finding that although syntactic features
are predictive of readability, low level features re-
main the most predictive.

Wikipedia

Feature Accuracy

Ratio Verbs 67.90
Ratio Adjectives 66.46
Sentence Length 61.96
Ratio Adverbs 57.53
Mean Age of Acquisition 57.34
Average Word Length 56.17
Ambiguity – sent SD 55.66
Lexical suprisal – sent SD 55.37
Num of verb phrases 55.13
Ambiguity Sent Mean 55.00

Table 4: Accuracy on Wikipedia dataset when pre-
dicting readability using single features.

Effects of using gaze data The main objective
of this study was to explore how the use of eye
tracking data improved our readability prediction
model. Using the Dundee eye tracking corpus, we
were able to learn models for predicting an aver-
age first pass duration, total regression to dura-
tion, and total fixation duration for a given sen-
tence in our readability datasets. Using hard pa-
rameter sharing, we learned to predict a readabil-
ity label and gaze simultaneously. This method
allows us to exploit the information contained in
one task to better generalize another. Our results
demonstrate that gaze data does improve readabil-
ity models significantly.

Learning curves In figure 1 we compare the
learning curves for the best MTL and STL mod-
els for each dataset. We show the accuracy on
both validation sets using varying amounts of train
samples. The first train sample used consisted of
100 sentences. At this small sample size, the ef-
fect of the gaze data is more clear. For example,
for the Wikipedia dataset the validation accuracy
using 100 samples is about 74.5 % for the MTL
MLP system, while for the STL MLP system, the
accuracy is about 10 % lower. At about 20,000
samples the difference in performance between the
two systems begins to level off, however, MTL re-
mains slightly higher the entire time. This is in
line with Caruana (1997), who mentions that the

improvements using MTL are typically stronger
when using smaller sample sizes.

Figure 1: Learning curves for the OSE A-E and
Wikipedia datasets varying the train sample size.
The first sample size consisted of 100 sentences.

Similar results can be seen for the Advanced-
Elementary sentence pairs. We begin training our
model on about 100 samples and incrementally in-
creased the train set size. Neither of the models
achieve high accuracy, however, the MTL system
improves the result about 5 %, and as the training
set size increases, this trend persists. Similar re-
sults are observed for the Intermediate-Advanced
pairs.

5 Conclusion

In this study, we have presented the first applica-
tion of multi-task learning to predicting sentence-
level readability. We presented two models: a
deep learning model and a linear model. The lin-
ear multi-task learning model is novel and yields
statistically significant results, however, the deep
learning model performs better. We present a
learning curve analysis showing that multi-task
learning is more effective with small sample sizes,
however, the improvements are robust across sam-
ple sizes.
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dundee corpus. Proceedings of the 12th European
conference on eye movement.

Sigrid Klerke, Sheila Castilho, Maria Barrett, and An-
ders Søgaard. 2015. Reading metrics for estimating
task efficiency with mt output. In Conference on
Empirical Methods in Natural Language Process-
ing, page 6.

Victor Kuperman, Hans Stadthagen-Gonzalez, and
Marc Brysbaert. 2012. Age-of-acquisition ratings
for 30,000 english words. Behavior Research Meth-
ods, 44(4).

Keith Rayner. 1998. Eye movements in reading and
information processing: 20 years of research. Psy-
chological Bulletin, 124(3).

Keith Rayner. 2012. Eye movements in reading: Per-
ceptual and language processes. Elsevier.

Keith Rayner, Kathryn H Chace, Timothy J Slattery,
and Jane Ashby. 2006. Eye movements as reflec-
tions of comprehension processes in reading. Scien-
tific studies of reading, 10(3):241–255.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2).

Brian Roark, Asaf Bachrach, Carlos Cardenas, and
Christophe Pallier. 2009. Deriving lexical and
syntactic expectation-based measures for psycholin-
guistic modeling via incremental top-down parsing.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, page
324–333. Association for Computational Linguis-
tics.

Abhinav Deep Singh, Poojan Mehta, Samar Husain,
and Rajakrishnan Rajkumar. 2016. Quantifying
sentence complexity based on eye-tracking mea-
sures. In Proceedings of the Workshop on Compu-
tational Linguistics for Linguistic Complexity, page
202–212.

Sowmya Vajjala and Detmar Meurers. 2012. On im-
proving the accuracy of readability classification us-
ing insights from second language acquisition. In
The 7th Workshop on the Innovative Use of NLP for
Building Educational Applications, page 163–173.

Sowmya Vajjala and Detmar Meurers. 2014. Readabil-
ity assessment for text simplification. International
Journal of Applied Linguistics, 165(2).

Menglin Xia, Ekaterina Kochmar, and E Briscoe. 2016.
Text readability assessment for second language
learners.

443


