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Abstract

We participated in the BioNLP Shared Task 2011,
addressing the GENIA event extraction (GE) and
the Epigenetics and Post-translational Modifica-
tions (EPI) tasks. A graph-based approach is
employed to automatically learn rules for detect-
ing biological events in the life-science literature.
The event rules are learned by identifying the
key contextual dependencies from full syntactic
parsing of annotated text. Event recognition is
performed by searching for an isomorphism be-
tween event rules and the dependency graphs of
sentences in the input texts. While we explored
methods such as performance-based rule rank-
ing to improve precision, we merged rules across
multiple event types in order to increase recall.

We achieved a 41.13% F-score in detecting events
of nine types in the Task 1 of the GE task, and a
52.67% F-score in identifying events across fif-
teen types in the core task of the EPI task. Our
performance on both tasks is comparable to the
state-of-the-art systems. Our approach does not
require any external domain-specific resources.
The consistent performance on the two tasks sup-
ports the claim that the method generalizes well
to extract events from different domains where
training data is available.

1 Introduction

Recent research in information extraction in the biolog-
ical domain has focused on extracting semantic events
involving genes or proteins, such as binding events or
post-translational modifications. To date, most of the
biological knowledge about these events has only been
available in the form of unstructured text in scientific
articles (Abulaish and Dey, 2007; Ananiadou et al.,
2010).

When a biological event is described in text, it can
be analyzed by recognizing its type, the trigger that sig-
nals the event, and one or more event arguments. The
BioNLP-ST 2009 (Kim et al., 2009) focused on the

recognition of semantically typed, complex events in
the biological literature. Although the best-performing
system achieved a 51.95% F-score in identifying events
across nine types, only 4 of the rest 23 participating
teams obtained an F-score in the 40% range. This sug-
gests that the problem of biological event extraction is
difficult and far from solved.

Graphs provide a powerful primitive for modeling
biological data such as pathways and protein interac-
tion networks (Tian et al., 2007; Yan et al., 2006). More
recently, the dependency representations obtained from
full syntactic parsing, with its ability to reveal long-
range dependencies, has shown an advantage in bi-
ological relation extraction over the traditional Penn
Treebank-style phrase structure trees (Miyao et al.,
2009). Since the dependency representation maps
straightforwardly onto a directed graph, operations on
graphs can be naturally applied to the problem of bio-
logical event extraction.

We participated in the BioNLP-ST 2011 (Kim et al.,
2011a), and applied a graph matching-based approach
(Liu et al., 2010) to tackling the Task 1 of the GE-
NIA event extraction (GE) task (Kim et al., 2011b), and
the core task of the Epigenetics and Post-translational
Modifications (EPI) task (Ohta et al., 2011), two main
tasks of the BioNLP-ST 2011. Event recognition is
performed by searching for an isomorphism between
dependency representations of automatically learned
event rules and complete sentences in the input texts.
This process is treated as a subgraph matching problem,
which corresponds to the search for a subgraph isomor-
phic to a rule graph within a sentence graph. While
we explored methods such as performance-based rule
ranking to improve the precision of the GE and EPI
tasks, we merged rules across multiple event types in
order to increase the recall of the EPI task.

The rest of the paper is organized as follows: In Sec-
tion 2, we introduce the BioNLP Shared Task 2011.
Section 3 describes the subgraph matching-based event
extraction method. Section 4 and Section 5 elabo-
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rate the implementation details and our performance
respectively. Finally, Section 6 summarizes the paper
and introduces future work.

2 BioNLP Shared Task 2011

The BioNLP-ST 2011 is the extension of the BioNLP-
ST 2009 that focused on the recognition of events in the
biological literature. The BioNLP-ST 2011 extends the
previous task in three directions: the type of the inves-
tigated text, the domain of the subject, and the targeted
event types. As a result, the shared task was organized
into four independent tasks: GENIA Event Extraction
Task (GE), Epigenetics and Post-translational Modifi-
cations Task (EPI), Infectious Diseases Task (ID) and
Bacteria Track.

The definition of the GE task remained the same as
the BioNLP-ST 2009. However, additional annotated
texts that come from full papers were provided together
with the dataset of the 2009 task to generalize the task
from PubMed abstracts to full text articles. The pri-
mary task of the GE task was to detect biological events
of nine types such as protein binding and regulation,
given the annotation of protein names. It was required
to extract type, trigger, and primary arguments of each
event. This task is an example of extraction of seman-
tically typed, complex events for which the arguments
can also be other events. Such embedding results in a
nested structure that captures the underlying biological
statements more accurately.

Different from the subject domain of the GE task on
transcription factors in human blood cells, the EPI task
focused on events related to epigenetic change, includ-
ing DNA methylation and histone modification, as well
as other common post-translational protein modifica-
tions. The core task followed the definition for Phos-
phorylation event extraction in the 2009 task, and ex-
tended that basic event type to a total of fifteen types
including both positive and negative variants, for ex-
ampleAcetylationandDeacetylation. The task dataset
was prepared from relevant PubMed abstracts, with
additional evidence sentences from databases such as
PubMeth (Ongenaert et al., 2007). Given the annota-
tion of protein names, the core task required to extract
type, trigger, and primary arguments of each event.

We focused on the primary task of GE and the core
task of EPI, and tackled the event extraction problem in
both cases using a graph matching-based method.
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Figure1: Dependency Graph Example

3 Subgraph Matching-based Event Extraction

3.1 Dependency Representation
The dependency representation of a sentence is formed
by tokens in the sentence and binary relations between
them. A single dependency relation is represented
asrelation(governor, dependent), wheregovernorand
dependentare tokens, andrelation is a type of the
grammatical dependency relation. This representation
is essentially a labeled directed graph, which is named
dependency graphand defined as follows:

Definition 1. A dependency graph is a pair of sets
G = (V, E), whereV is a set of nodes that correspond
to the tokens in a sentence, andE is a set of directed
edges, for which the edge labels are types of depen-
dency relations between the tokens, and the edge direc-
tion is fromgovernorto dependentnode.

Figure 1 illustrates the dependency graph for the sen-
tence: “Interferons inhibit activation of STAT6 by in-
terleukin 4 in human monocytes by inducing SOCS-1
gene expression.” (MEDLINE: 10485906). The token
number in the sentence is appended to each token in
order to differentiate identical tokens that co-occur in a
sentence. All the protein names in the sentence have
been replaced with a unified tag “BIOEntity”. The
POS tag of each token is noted. “BIOEntity” tokens
are uniformly tagged as proper nouns.

3.2 Event Rule Induction
The premise of our work is that there is a set of fre-
quently occurring event rules that match a majority of
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statedevents about protein biology. We consider that
an event rule encodes the detailed description and char-
acterizes the typical contextual structure of a group of
biological events. The rules are learned from labeled
training sentences using a graph-based rule induction
method (Liu et al., 2010), and we briefly describe the
algorithm as follows.

Starting with the dependency graph of each training
sentence, edge directions are first removed so that the
directed graph is transformed into an undirected graph,
where a path must exist between any two nodes since
the graph is always connected. For each gold event, the
shortest dependency path in the undirected graph con-
necting the event trigger nodes to each event argument
node is selected. The union of all shortest dependency
paths is then computed, and the original directed de-
pendency representation of the path union is retrieved
and used as the graph representation of the event.

For multi-token event triggers, the shortest depen-
dency path connecting the node of every trigger token
to the node of each event argument is selected, and the
union of the paths is then computed for each trigger.
For regulation events, when a sub-event is used as an
argument, only the type and the trigger of the sub-event
are preserved as the argument of the main events. The
shortest dependency path is extracted so as to connect
the trigger nodes of the main event to the trigger nodes
of the sub-event. In case that there exists more than
one shortest path, all of the paths are considered. As a
result, each gold event is transformed into the form of
a biological event rule. The algorithm is elaborated in
more detail in (Liu et al., 2010). The obtained rules are
categorized in terms of the event types of the tasks.

3.3 Sentence Matching

We attempted to match event rules to each testing sen-
tence to extract events from the sentence using a sen-
tence matching approach. Since the event rules and the
sentences all possess a dependency graph, the matching
process is a subgraph matching problem, which cor-
responds to the search for a subgraph isomorphic to
an event rule graph within the graph of a testing sen-
tence. The subgraph matching problem is also called
subgraph isomorphism, defined in this work as follows:

Definition 2. An event rule graphGr = (Vr, Er)
is isomorphic to a subgraph of a sentence graphGs =
(Vs, Es), denoted byGr

∼= Ss ⊆ Gs, if there is an
injective mappingf : Vr → Vs such that, for every
directed pair of nodesvi, vj ∈ Vr, if (vi, vj) ∈ Er then
(f(vi), f(vj)) ∈ Es, and the edge label of(vi, vj) is

the same as the edge label of(f(vi), f(vj)).
The subgraph isomorphism problem is NP-complete

(Cormen et al., 2001). A number of algorithms have
been designed to tackle the problem of subgraph iso-
morphism in different applications (Ullmann, 1976;
Cordella et al., 2004; Pelillo et al., 1999). Considering
that the graphs of rules and sentences involved in the
matching process are small, a simple subgraph match-
ing algorithm using a backtracking approach (Liu et
al., 2010) was used in this work. It is named “Injec-
tive Graph Embedding Algorithm” and designed based
on the Huet’s graph unification algorithm (Huet, 1975).
The formalized algorithm and the detailed description
are given in (Liu et al., 2010).

When matching between graphs, different combina-
tions of matching features can be applied, resulting in
different matching criteria. The features include edge
features (E) which are edge label and edge direction,
and node features which are POS tags (P), trigger to-
kens (T), and all tokens (A), ranging from the least spe-
cific matching criterion, E, to the much stricter crite-
rion, A. For each sentence, the algorithm returns all the
matched rules together with the corresponding injec-
tive mappings from rule nodes to sentence tokens. Bio-
logical events are then extracted by applying the event
descriptions of tokens in each matched rule consisting
of the type, the trigger and the arguments to the corre-
sponding tokens of the sentence.

4 Implementation

4.1 Preprocessing
The same preprocessing steps as in (Liu et al., 2010)
are completed on the datasets of the GE and the EPI
tasks before performing text mining strategies. These
include sentence segmentation and tokenization, Part-
of-Speech tagging, and sentence parsing.

The Stanford unlexicalized natural language parser
(version 1.6.5), which includes Genia Treebank 1.0
(Ohta et al., 2005) as training material, is used to ana-
lyze the syntactic structure of the sentences. The parser
returns a dependency graph for each sentence.

4.2 Rule Induction and Sentence Matching
For each gold event, the shortest path in the undirected
graph connecting the event trigger to each event argu-
ment is extracted using Dijkstra’s algorithm (Cormen
et al., 2001) with equal weight for edges.

Sentence matching is performed and the raw match-
ing results are then postprocessed based on the specifi-
cations of the shared task, such as event trigger cannot
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bea protein name or another event.

5 Results and Evaluation

This section presents our results on the GE and the EPI
tasks (Kim et al., 2011b; Ohta et al., 2011) respectively.
Different experimental methods in processing the ob-
tained event rules are described for the purpose of im-
proving the precision of both tasks and increasing the
recall of the EPI task.

5.1 GE task

5.1.1 Preprocessing Results
For training data, only sentences that contain at least

one protein and one event are considered candidates
for further processing. For testing data, candidate sen-
tences contain at least one protein. Our event recog-
nition method focuses on extracting events from sen-
tences. Therefore, only sentence-based events are con-
sidered in this work. Table 1 presents some statistics of
the preprocessed datasets.

Attributes Counted Training Dev. Testing

Abstracts&Fullarticles 908 259 347
Total sentences 8,759 2,954 3,437
Candidatesentences 3,615 1,989 2,353
Total events 10,287 3,243 4,457
Sentence-basedevents 9,583 3,058 hidden

Table 1: Statistics of GE dataset

We were able to build event rules for 9,414 gold
events. Gold events in which the event trigger and
an event argument are not connected by a path in the
undirected dependency graph of the sentence could not
be transformed into a biological event rule. After re-
moving duplicate rules, we obtained 8,677 event rules,
which are distributed over nine event types. The rules
that are isomorphic to each other in terms of their graph
representation are not filtered at this stage as the dupli-
cate events they produce will be removed eventually to
prepare the annotations for the shared task.

5.1.2 Probability-based rule refining
We observed that some event rules of an event type

overlap with rules of other event types. For instance, a
Transcriptionrule is isomorphic to aGeneexpression
rule in terms of the graph representation and they also
share a same event trigger token. In fact, tokens like
“gene expression” and “induction” are used as event
trigger of both Transcription and Geneexpression

in training data. Therefore, the detection of some
Geneexpressionevents is always accompanied by cer-
tain Transcription events. This will have detrimen-
tal effects on the precision of bothTranscriptionand
Geneexpressionevent types.

As transcription is the first step leading to gene ex-
pression (Ananiadou and Mcnaught, 2005), there ex-
ist some correlations or associations between the two
event types. In tackling this problem, we processed
the overlapping rules based on a conditional probability
P (t|E), wheret stands for an event trigger andE repre-
sents one of the event types. Eq.(1) is used to estimate
the value ofP (ti|E).

P (ti|E) =
f(ti, E)∑
i f(ti, E)

, (1)

wheref(ti, E) is the frequency of the event triggerti
of the event typeE in the training data, and

∑
i f(ti, E)

calculates the total frequency of all event triggers of the
event typeE in the training data.

P (ti|E) evaluates the degree of the importance of a
trigger to an event type. When the dependency graphs
of two rules of different event types are isomorphic to
each other, and two rules share a same event trigger,
we examine theP (ti|E) of each event type, and only
retain the rule for which theP (ti|E) is higher.

Compared to the “once a trigger, always a trigger”
method employed in other work (Buyko et al., 2009;
Kilicoglu and Bergler, 2009), triggers are treated in a
more flexible way in our work. A token is not neces-
sarily always a trigger unless it appears in the appropri-
ate context. Also, the same token can serve as trigger
for different event types as long as it appears in the dif-
ferent context. A trigger will only be classified into a
fixed event type when it could serve as trigger for dif-
ferent event types in the same context.

5.1.3 Performance-based rule ranking
In addition to the process of refining rules across

event types, we proposed a performance-based rule
ranking method to evaluate each rule under one event
type. We matched each rule to sentences in the de-
velopment set using the subgraph matching approach.
For rules that produce at least one event prediction, we
ranked them byPRC(ri), the precision of each ruleri,
which is computed via Eq.(2).

PRC(ri) =
#correctly predicted events by ri

#predicted events by ri
(2)
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We manually examined the rules with low rank. In
our experiments, thePRC(ri) ratio of these rules is
bigger than 4:1. We removed the ones that are either in-
correct or ambiguous in semantics and syntactics based
on our domain knowledge. Our assumption is that these
rules will keep producing false positive events on the
testing data if they are retained in the rule set. For
rules that do not make any predictions on the develop-
ment data, we keep them in the set in the hope that they
may contribute to the event recognition from the testing
data. Without affecting much on the recall, this process
helps to improve the precision of the events extracted
from the development data.

5.1.4 GE Results on Development Set

In our previous work (Liu et al., 2010), the match-
ing criteria, “E+P+T” and and “E+P+A”, achieved the
highest F-score and the highest precision respectively
among all the investigated matching criteria. “E+P+T”
requires that edge directions and labels of all edges (E)
be identical, POS tags (P) of all tokens be identical, and
tokens of only event triggers (T) be identical for the
edges and the nodes of a rule and a sentence to match
with each other. “E+P+A” requires that edges (E), POS
tags (P) and all tokens (A) be exactly the same. In this
work, we focused on these two criteria and explored
to extend them for graph matching between event rules
and sentences.

We attempted to relax the matching criterion of POS
tags for nouns and verbs. For nouns, the plural form of
nouns is allowed to match with the singular form, and
proper nouns are allowed to match with regular nouns.
For verbs, past tense, present tense and base present
form are allowed to match with each other.

Next, letters of each token are transformed into lower
case, and tokens containing hyphens are normalized
into non-hyphenated forms. Lemmatization is then per-
formed on every pair of tokens to be matched using
WordNet (Fellbaum, 1998) as the lemmatizer to al-
low tokens that share a same lemma to match. Since
WordNet is a lexical database only for the general Eng-
lish language, the lemma of a fair amount of domain-
specific vocabulary cannot be found in WordNet, such
as “Phosphorylation” and “Methylation”. In this case,
a backup process is invoked to stem the tokens to
their root forms using the Porter’s stemming algorithm
(Porter, 1997) allowing the tokens derived from a same
root word to match.

To further generalize event rules, we extended
the matching criteria “E+P*+A*” to “E+P*+A*S”

to allow tokens to match if their lemmatized forms
have a common synonym in terms of the synsets
of WordNet. Since WordNet will relate verbs such
as “induce” and “receive” together as they share
a synonym “have”, and allow nouns like “expres-
sion” and “aspect” to match as they share a syn-
onym “face”, we limited this extension to only ad-
jective tokens to avoid too many false positive events
and allow tokens like “crucial” and “critical” to match.

Table 2 shows the event extraction results on the
development data based on different matching cri-
teria. The performance is evaluated by “Approxi-
mate Span Matching/Approximate Recursive Match-
ing”, the primary evaluation measure of the shared task.
“E+P*+T*”, “E+P*+A*” and “E+P*+A*S” demon-
strate the performance of the extended criteria.

Feature Recall(%) Prec.(%) F-score(%)

E+P+A 28.03 66.74 39.48
E+P+T 31.17 52.38 39.09

E+P*+A* 31.45 63.51 42.07
E+P*+T* 35.71 46.26 40.31

E+P*+A*S 31.51 63.32 42.08

Table 2: GE results on development set using different
matching criteria

As the strictest matching criteria, “E+P+A” performs
better than “E+P+T” in both precision and F-score. Al-
though “E+P+T” achieves a better recall, when relax-
ing the matching criteria from all tokens being the same
to only event trigger tokens having to be identical, the
precision of “E+P+T” is decreased by a large margin,
nearly 14%. This indicates that a certain number of bi-
ological events are described in very similar ways in
the literature, involving same grammatical structures
and identical contextual contents. While producing
more incorrect events, “E+P*+A*” and “E+P*+T*”
significantly improve the recall, leading to a better
F-score over “E+P+A” and “E+P+T”. This confirms
the effectiveness of the POS relaxation and the to-
ken lemmatization on the generalization of event rules.
“E+P*+A*S” obtains a comparable performance with
“E+P*+A*” with only a 0.06% increase in recall and a
0.2% drop in precision.

5.1.5 GE Results on Testing Set
Table 3 shows our results of “E+P*+A*” on the test-

ing data using the official metric. We are listed as
team “CCP-BTMG”. Ranked by F-score, our perfor-
mance ranked 10th out of 15 participating groups. It
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is worth noting that our result on the event type “Pro-
tein catabolism”ranked 1st.

Event type Rec.(%) Prec.(%) F(%)

Geneexpression 58.68 75.77 66.14
Transcription 39.08 51.91 44.59
Proteincatabolism 66.67 83.33 74.07
Phosphorylation 63.78 85.51 73.07
Localization 29.32 91.80 44.44

Binding 22.61 49.12 30.96

Regulation 12.99 46.73 20.33
Positive regulation 21.90 44.51 29.35
Negative regulation 15.76 40.18 22.64

All total 31.57 58.99 41.13

Table 3: GE results of “E+P*+A*” on testing set by “Ap-
proximate Span /Approximate Recursive Matching”

The performance of our system on the testing set
is consistent with that of the development set. We
achieved a comparable precision with the top systems
and ranked 6th by precision. However, our recall was
lower, ranking 11th. This adversely impacted the over-
all F-score. The lower recall is not surprising because
the graph matching criteria “E+P*+A*” strictly de-
mand that every lemmatized token in the patterns, other
than protein names represented as“BIOEntity”, has to
find its exact match in the input sentences. The detailed
analysis on the recall problem is presented in the “Error
Classification” section.

While examining the false positives, we found that
for many cases our result matched the gold annotation
but for the trigger word. We believe that event type and
their arguments are more important biologically than
the trigger. We consulted some domain experts who
reinforced our intuition in many cases that different
words could be considered as trigger for the event in
question. Following this we contacted organizers and
they agreed to release a new evaluation scheme to ig-
nore the trigger match requirement in order to support
evaluation of the event extraction itself.

Table 4 shows our results of “E+P*+A*” evaluated
by other official evaluation metrics of the task. The
strict matching scheme requires exact trigger span as
well as all its nested events to be recursively correct
for an event to be considered correctly extracted. Our
F-score in terms of the strict matching is only 2.65%
lower than the relaxed, primary measure, indicating
that most of the detected triggers are captured with cor-
rect text span. The organizers also provided the eval-

uation results on PubMed abstracts and PMC full text
articles separately. Our system performs consistently
on both abstracts and full papers and the difference be-
tween F-scores is less than 1% (41.39% vs. 40.47%)
mostly due to the small recall loss on full texts.

Measures R(%) P(%) F(%)
Strict Matching 29.55 55.13 38.48
Appr. SpanNoTrigger/Recur. 33.68 62.17 43.69
Appr. Span/Recur./Decomp. 32.56 66.20 43.65
Appr. Sp. No T./Recur./Decomp. 34.96 69.87 46.60
Appr. Span/Recur. (Abstract) 31.87 59.02 41.39
Appr. Span/Recur. (Full paper) 30.82 58.92 40.47

Table 4: GE results on testing set by other evaluation measures

5.2 EPI task
5.2.1 Preprocessing Results

Table 5 presents some statistics of the datasets. We
were able to build event rules for 1598 gold events. Af-
ter removing duplicate rules, we obtained 1,562 event
rules distributed over fifteen event types.

Attributes Counted Training Dev. Testing

Abstracts 600 200 440
Total sentences 6,411 2,218 4,640
Candidatesentences 1,054 1,241 2,839
Total events 1,738 582 1,194
Sentence-basedevents 1,643 536 hidden

Table 5: Statistics of EPI dataset

We processed the obtained rules following the
same rule refining and ranking processes of the GE
task. We experimented with two graph matching
criteria for extracting EPI events, “E+P*+T*” and
“E+P*+A*”. From the preliminary results, we ob-
served that “E+P*+A*” achieves a high precision over
80% but a lower recall around 33%. Compared to
the GE task results, “E+P*+T*” achieves a better re-
call against a small tradeoff for precision. We consider
that this is because the event triggers themselves for
the EPI task such as “acetylation”, “deglycosylation”
and “demethylation” are powerful enough to differen-
tiate among event types without the need to resort to
more contextual content of the patterns. Therefore, we
focused on using “E+P*+T*” to extract events.

5.2.2 Recall-oriented rule merging
Since all the event types exceptCatalysis,

DNA methylation and DNA demethylation in the

169



EPI task involve addition or removal of biochemical
functional groups at a particular amino acid residue of
a protein (Hunter, 2009), common syntactic structures
of expressing the protein PTM events might be shared
across event types. To further improve the recall, we
proposed a rule merging strategy to take advantage of
the syntactic structures of rules across event types.

We first experimented with a “pairwise flip” ap-
proach which combines rules of the pairwise, positive
and negative event types by flipping the type and the
trigger of event rules. For instance, the event rules
of PhosphorylationandDephosphorylationare merged
together and then used to detect events of the two types
respectively.

Next, the “pairwise flip” approach was extended to
an “all in one” method. For one event type, the rules
of all other PTM event types are processed and merged
into the rules of the current type if the trigger of rules
of other types contains one of these 12 morphemes:
“acetyl”, “glycosyl”, “hydroxyl”, “methyl”, “phospho-
ryl”, “ubiqui”, “deacetyl”, “deglycosyl”, “dehydroxyl”,
“demethyl”, “dephosphoryl”, “deubiqui”. We consider
that event rules involving these morphemes in trigger
are more likely to discuss representative protein post-
translational modifications.

5.2.3 EPI Results on Development Set
Table 6 shows the event extraction results on the de-

velopment data using different matching criteria and
rule merging methods. The performance is evaluated
by the primary evaluation measure.

Feature Recall(%) Prec.(%) F(%)

E+P*+A* 32.65 79.83 46.34
E+P*+T* 38.14 73.51 50.23

E+P*+A*(pairwise) 35.22 80.39 48.98
E+P*+T*(pairwise) 40.89 77.52 53.54
E+P*+T*(all in one) 46.39 63.08 53.47

Table 6: EPI results on development set

The two rule merging methods using “E+P*+T*”
outperform others in terms of F-score. The “pairwise
flip” method achieves higher precision as the syntac-
tic structures of rules to describe the pairwise, positive
and negative events tend to be highly similar. However,
when merging all the rules across PTM event types,
although more events are captured, rules that involve
syntactic structures for expressing very specific events
of certain types may not generalize well on some other
types, resulting in incorrect events. Thus, the “all in

one” approach significantly improves the recall while
producing many false positive events, leading to a F-
score comparable with the “pairwise flip” method.

5.2.4 EPI Results on Testing Set
We conducted two runs on the testing data in terms

of “E+P*+T*(pairwise)” and “E+P*+T*(all in one)”.
Since the two rule merging methods achieve compara-
ble F-scores, we decided to submit a run with higher
recall. Table 7 shows our results of “E+P*+T*” using
the “all in one” approach on the official metrics. Only
7 teams participated in this task. For the core task, our
performance ranked 7th, only 0.16% lower in F-score
than the 6th team. When evaluating our results in terms
of the full task, we ranked 6th.

Feature Recall(%) Prec.(%) F(%)

E+P*+T*(coretask) 45.06 63.37 52.67
E+P*+T*(full task) 23.44 37.93 28.97

Table 7: EPI results on testing set

Compared to the top teams, our F-score is mostly af-
fected by the lower recall. Although the run we submit-
ted achieves the highest recall among all our runs, our
recall is about 20% less than the best performing sys-
tem. Considering that most of the event types of the EPI
task tend to use tokens containing only a small fixed
set of domain-specific morphemes as triggers, the re-
call deficit is assumed to be lack of event rules that de-
scribe syntactic structures of expressing a fair amount
of EPI events.

5.3 Error Classification
Since the gold event annotation of the testing data is
hidden, we examined the event extraction results of the
development data to analyze the underlying errors. The
detailed analysis is reported in terms of false negative
and false positive events.

5.3.1 False negatives
It is shown that false negative events have a substan-

tial impact on the performance of all 15 participating
teams of the GE task. The best recall, 49.56%, cap-
tures less than half of the gold events in the testing set.
In our work, three major causes of false negatives are
determined for both tasks.

(1) Low coverage of rule set: For the GE task, the
graph matching criteria “E+P*+A*” strictly asks every
lemmatized token in the patterns to find its exact match
in the input sentences. Although maintaining the pre-
cision at a high level, this directly limits the contextual
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structureand content around the proteins and thus pre-
vents the recall from being higher.

Lemmatization helps to detect more events, however,
further generalization needs to be performed on the ex-
isting rules to relax the token matching requirement.
For instance, when “lysine” appears in an event rule,
knowing that “lysine” is an amino acid, the rule might
be further generalized to allow all amino acids to match
with each other in order to recognize more events.

For the EPI task, although “E+P*+T*” requires to-
kens of only event triggers to be identical, we captured
less than half of the gold events. We noticed that many
trigger tokens in the development sentences do not ap-
pear as triggers in the training set. This leads to the
failure of extracting the corresponding events. Since
the training data is the only source of triggers in our
work, the coverage of triggers limits the generalization
power of event rules.

For both tasks, we found that many gold events are
described in grammatical structures that are not cov-
ered by the existing rules induced from the training sen-
tences. These structures tend to be more complex, in-
volving a long dependency path from the trigger to ar-
guments in the graphs of sentences. Events that consist
of these structures are not recognized as no matched
rules will be returned from the subgraph matching.

In order to further improve the recall, some post-
processing steps are necessary to be performed on the
raw dependency graphs of both rules and sentences in-
stead of using them in the graph matching directly. By
eliminating semantically unimportant nodes and group-
ing lexically connected nodes together, the rules can
be generalized to retain only their skeleton structures
while complex sentences can be syntactically simpli-
fied to allow event rules to match them.

(2) Compound error effect: In both tasks, reg-
ulation and catalysis event types can take sub-events
as arguments. Therefore, if the nested sub-events are
not correctly identified, the main events will not be ex-
tracted due to the compound error effect.

(3) Anaphora and coreference: Since our system
focuses on extracting events from sentences, events that
contain protein names spanning multiple sentences will
not be captured. Recognition of these events requires
the ability to do anaphora and coreference resolution in
biological text (Gasperin and Briscoe, 2008).

5.4 False positives

Three major causes of false positives are generalized
from our analysis.

(1) Assignment of overlapping event rules: The
conditional probability-based method to assign over-
lapped rules of different event types effectively reduces
the number of event candidates but leads to errors. For
instance, “methylation” is used as the trigger for two
overlapping rules ofDNA methylationand Methyla-
tion. Based on theP (ti|E), “methylation” is classified
intoDNA methylation. An erroneousDNA methylation
event is then detected from a development sentence in-
stead of the goldMethylationevent. Although the trig-
ger and the participant are all identified correctly, the
event type is assigned wrongly.

In fact, the same contextual structure and con-
tent appear in bothDNA methylationandMethylation
events in the training data. According to the EPI
task (Ohta et al., 2011),Methylation is to abbreviate
for “protein methylation” and thus is different from
DNA methylation. In this case, the only way to dis-
tinguish between the two types is to identify that the
biological entity mentioned in the sentence is a gene for
DNA methylationanda protein forMethylation. Since
genes and their products are uniformly annotated as
“Protein” in the task, it is not possible to assign a cor-
rect event type in this case from the perspective of the
event extraction itself.

(2) Lack of postprocessing rules: Some misiden-
tified events require customized postprocessing rules.
For instance, aGeneexpressionevent is detected from
the phrase “Tax expression vector” of a development
sentence. However, since “Tax expression” is only
used as an adjective to describe “vector” in this context,
the identifiedGeneexpressionevent is not appropriate.
Likewise, “Sp1 transcription” should not be identified
as an event in the context of “Sp1 transcription factors”.

(4) Inconsistencies in gold annotation: Some ex-
tracted events are considered biologically meaningful
but evaluated as false positives due to the inconsisten-
cies in the gold annotation. In Table 4, the 3.2% in-
crease in precision of the no-trigger evaluation measure
over the primary evaluation scheme indicates that the
inconsistent gold annotations of event triggers.

6 Conclusion and future work

We used dependency graphs to automatically induce
biological event rules from annotated events. We ex-
plored methods such as performance-based rule rank-
ing to improve the accuracy of the obtained rules, and
we merged rules across multiple event types in order to
increase the coverage of the rules. The event extraction
process is treated as a subgraph matching problem to
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searchfor the graph of an event rule within the graph of
a sentence. We tackled two main tasks of the BioNLP
Shared Task 2011. We achieved a 41.13% F-score in
detecting events across nine types in the Task 1 of the
GE task, and a 52.67% F-score in identifying events
across fifteen types in the core task of the EPI task.

In future work, we would like to explore the ap-
proaches of generalizing the raw dependency graphs of
both event rules and sentences in order to improve the
recall of our event extraction system. We also plan to
extend our system to tackle the other sub-tasks in GE
and EPI tasks, such as to extract events with additional
arguments like site and location, and to recognize nega-
tions and speculations regarding the extracted events.
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