
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1509–1519
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

1509

Sentiment Adaptive End-to-End Dialog Systems

Weiyan Shi

[24]7.ai
weiyan.shi@247.ai

Zhou Yu

University of California, Davis
joyu@ucdavis.edu

Abstract

End-to-end learning framework is useful
for building dialog systems for its simplic-
ity in training and efficiency in model up-
dating. However, current end-to-end ap-
proaches only consider user semantic in-
puts in learning and under-utilize other
user information. Therefore, we pro-
pose to include user sentiment obtained
through multimodal information (acous-
tic, dialogic and textual), in the end-to-end
learning framework to make systems more
user-adaptive and effective. We incorpo-
rated user sentiment information in both
supervised and reinforcement learning set-
tings. In both settings, adding sentiment
information reduced the dialog length and
improved the task success rate on a bus
information search task. This work is
the first attempt to incorporate multimodal
user information in the adaptive end-to-
end dialog system training framework and
attained state-of-the-art performance.

1 Introduction

Most of us have had frustrating experience and
even expressed anger towards automated customer
service systems. Unfortunately, none of the cur-
rent commercial systems can detect user senti-
ment and let alone act upon it. Researchers have
included user sentiment in rule-based systems
(Acosta, 2009; Pittermann et al., 2010), where
there are strictly-written rules that guide the sys-
tem to react to user sentiment. Because traditional
modular-based systems are harder to train, to up-
date with new data and to debug errors, end-to-end
trainable systems are more popular. However, no
work has tried to incorporate sentiment informa-
tion in the end-to-end trainable systems so far to

create sentiment-adaptive systems that are easy to
train. The ultimate evaluators of dialog systems
are users. Therefore, we believe dialog system
research should strive for better user satisfaction.
In this paper, we not only included user sentiment
information as an additional context feature in an
end-to-end supervised policy learning model, but
also incorporated user sentiment information as
an immediate reward in a reinforcement learning
model. We believe that providing extra feedback
from the user would guide the model to adapt to
user behaviour and learn the optimal policy faster
and better.

There are three contributions in this work: 1) an
audio dataset1 with sentiment annotation (the an-
notators were given the complete dialog history);
2) an automatic sentiment detector that consid-
ers conversation history by using dialogic features,
textual features and traditional acoustic features;
and 3) end-to-end trainable dialog policies adap-
tive to user sentiment in both supervised and rein-
forcement learning settings. We believe such dia-
log systems with better user adaptation are benefi-
cial in various domains, such as customer services,
education, health care and entertainment.

2 Related Work

Many studies in emotion recognition (Schuller
et al., 2003; Nwe et al., 2003; Bertero et al., 2016)
have used only acoustic features. But there has
been work on emotion detection in spoken dialog
systems incorporating extra information as well
(Lee and Narayanan, 2005; Devillers et al., 2003;
Liscombe et al., 2005; Burkhardt et al., 2009;
Yu et al., 2017). For example, Liscombe et al.
(2005) explored features like users’ dialog act, lex-
ical context and discourse context of the previous
turns. Our approach considered accumulated di-

1The dataset is available here.

http://www.dropbox.com/s/nl5j4ts7kewx47v/sample_50.zip?dl=0


1510

alogic features, such as total number of interrup-
tions, to predict user sentiment along with acoustic
and textual features.

The traditional method to build dialog system is
to train modules such as language understanding
component, dialog manager and language gener-
ator separately (Levin et al., 2000; Williams and
Young, 2007; Singh et al., 2002). Recently, more
and more work combines all the modules in an
end-to-end training framework (Wen et al., 2016;
Li et al., 2017; Dhingra et al., 2016; Williams
et al., 2017; Liu and Lane, 2017a). Specifically
related to our work, Williams et al. (2017) built a
model, which combined the traditional rule-based
system and the modern deep-learning-based sys-
tem, with experts designing actions masks to regu-
late the neural model. Action masks are bit vectors
indicating allowed system actions at certain dialog
state. The end-to-end framework made dialog sys-
tem training simpler and model updating easier.

Reinforcement learning (RL) is also popular in
dialog system building (Zhao and Eskenazi, 2016;
Liu and Lane, 2017b; Li et al., 2016). A common
practice is to simulate users. However, building a
user simulator is not a trivial task. Zhao and Es-
kenazi (2016) combines the strengths of reinforce-
ment learning and supervised learning to acceler-
ate the learning of a conversational game simula-
tor. Li et al. (2016) provides a standard framework
for building user simulators, which can be modi-
fied and generalized to different domains. Liu and
Lane (2017b) describes a more advanced way to
build simulators for both the user and the agent,
and train both sides jointly for better performance.
We simulated user sentiment by sampling from
real data and incorporated it as immediate rewards
in RL, which is different from common practice of
using task success as delayed rewards in RL train-
ing.

Some previous module-based systems inte-
grated user sentiment in dialog planning (Acosta,
2009; Acosta and Ward, 2011; Pittermann et al.,
2010). They all integrated user sentiment in the
dialog manager with manually defined rules to re-
act to different user sentiment and showed that
tracking sentiment is helpful in gaining rapport
with users and creating interpersonal interaction
in the dialog system. In this work, we include user
sentiment into end-to-end dialog system training
and make the dialog policy learn to choose dia-
log actions to react to different user sentiments

automatically. We achieve this through integrat-
ing user sentiment into reinforcement reward de-
sign. Many previous RL studies used delayed re-
wards, mostly task success. However, delayed re-
wards make the converging speed slow, so some
studies integrated estimated per-turn immediate
reward. For example, Ferreira and Lefèvre (2013)
explored expert-based reward shaping in dialog
management and Ultes et al. (2017) proposed In-
teraction Quality (IQ), a less subjective variant of
user satisfaction, as immediate reward in dialog
training. However, both methods are not end-to-
end trainable, and require manual input as prior,
either in designing proper form of reward, or in
annotating the IQ. Our approach is different as we
detect the multimodal user sentiment on the fly
and does not require manual input. Because sen-
timent information comes directly from real users,
our method will adapt to user sentiment as the di-
alog evolves in real time. Another advantage of
our model is that the sentiment scores come from
a pre-trained sentiment detector, so no manual an-
notation of rewards is required. Furthermore, the
sentiment information is independent of the user’s
goal, so no prior domain knowledge is required,
which makes our method generalizable and inde-
pendent of the task.

3 Dataset

We experimented our methods on DSTC1 dataset
(Raux et al., 2005), which has a bus information
search task. Although DSTC2 dataset is a more
commonly-used dataset in evaluating dialog sys-
tem performance, the audio recordings of DSTC2
are not publicly available and therefore, DSTC1
was chosen. There are a total of 914 dialogs
in DSTC1 with both text and audio information.
Statistics of this dataset are shown in Table 1. We
used the automatic speech recognition (ASR) as
the user text inputs instead of the transcripts, be-
cause the system’s action decisions heavily de-
pend on ASR. There are 212 system action tem-
plates in this dataset. Four types of entities are
involved, <place>, <time>, <route>, and
<neighborhood>.

4 Annotation

We manually annotated 50 dialogs consisting of
517 conversation turns for user sentiment. Senti-
ment is categorized into negative, neutral

and positive. The annotator had access to the



1511

Category Total

total dialogs 914
total dialogs in train 517
total dialogs in test 397

Statistics Total

avg dialog len 13.8
vocabulary size 685

Table 1: Statistics of the text data.

Category Total

total dialogs 50
total audios 517
total audios in train 318
total audios in dev 99
total audios in test 100

Category Total

neutral 254
negative 253
positive 10

Table 2: Statistics of the annotated audio set.

entire dialog history in the annotation process be-
cause the dialog context gives the annotators a
holistic view of the interactions, and annotating
user sentiment in a dialog without the context is re-
ally difficult. Some previous studies have also per-
formed similar user information annotation given
context, such as Devillers et al. (2002). The an-
notation scheme is described in Table 10 in Ap-
pendix A.2. To address the concern that dialog
quality may bias the sentiment annotation, we ex-
plicitly asked the annotators to focus on users’ be-
haviour instead of the system, and hid all the de-
tails of multimodal features from the annotators.
Moreover, two annotators were calibrated on 37
audio files, and reached an inter-annotator agree-
ment (kappa) of 0.74. The statistics of the anno-
tation results are shown in Table 2. The skew-
ness in the dataset is due to the data’s nature. In
the annotation scheme, positive is defined as
“excitement or other positive feelings”, but peo-
ple rarely express obvious excitement towards au-
tomated task-oriented dialog systems. What we
really want to distinguish is neutral and positive
cases from negative cases so as to avoid the neg-
ative sentiment, and the dataset is balanced for
these two cases. To the best of our knowledge, our
dataset is the first publicly available dataset that
annotated user sentiment with respect to the en-
tire dialog history. There are similar datasets with
emotion annotations (Schuller et al., 2013) but are
not labeled under dialog contexts.

5 Multimodal Sentiment Classification

To detect user sentiment, we extracted a set of
acoustic, dialogic and textual features.

5.1 Acoustic features

We used openSMILE (Eyben et al., 2013) to ex-
tract acoustic features. Specifically, we used the
paralinguistics configuration from Schuller et al.
(2003), which includes 1584 acoustic features,
such as pitch, volume and jitter. In order to avoid
possible overfitting caused by the large number of
acoustic features, we performed tree-based feature
selection (Pedregosa et al., 2011) to reduce the size
of acoustic features to 20. The selected features
are listed in Table 12 in Appendix A.4.

5.2 Dialogic features

Four categories of dialogic features are selected
according to previous literature (Liscombe et al.,
2005) and the statistics observed in the dataset. We
used not only the per-turn statistics of these fea-
tures, but also the accumulated statistics of them
throughout the entire conversation so that the sen-
timent classifier can also take the entire dialog
context into consideration.

Interruption is defined as the user interrupting
the system speech. Interruptions occurred
fairly frequently in our dataset (4896 times
out of 14860 user utterances).

Button usage When the user is not satisfied with
the ASR performance of the system, he/she
would rather choose to press a button for
”yes/no” questions, so the usage of buttons
can be an indication of negative sentiment.
During DSTC1 data collection, users were
notified about the option to use buttons, so
this kind of information is available in the
data.

Repetitions There are two kinds of repetitions:
the user asks the system to repeat the previ-
ous sentence, and the system keeps asking the
same question due to failures to catch some
important entity. In our model, we combined
these two situations as one feature because
very few user repetitions occur in our data
(<1%). But for other data, it might be helpful
to separate them.

Start over is active when the user chooses to
restart the task in the middile of the conversa-
tion. The system is designed to give the user
an option to start over after several turns. If
the user takes this offer, he/she might have
negative sentiment.



1512

5.3 Textual features

We also noticed that the semantic content of the
utterance was relevant to sentiment. So we used
the entire dataset as a corpus and created a tf-idf
vector for each utterance as textual features.

5.4 Classification results

The sentiment classifier was trained on the 50 di-
alogs annotated with sentiment labels. The pre-
dictions made by this classifier were used for the
supervised learning and reinforcement learning in
the later sections. We used random forest as
our classifier (an implementation from scikit-learn
(Pedregosa et al., 2011)), as we had limited anno-
tated data. We separated the data to be 60% for
training, 20% for validation and 20% for testing.
Due to the randomness in the experiments, we ran
all the experiments 20 times and reported the aver-
age results of different models in Table 4. We also
conducted unpaired one-tailed t-test to assess the
statistical significance.

We extracted 20 acoustic features, eight dia-
logic features and 164 textual features. From Ta-
ble 4, we see that the model combining all the
three categories of features performed the best
(0.686 in F-1, p < 1e�6 compared to acoustic
baseline). One interesting observation is that by
only using eight dialogic features, the model al-
ready achieved 0.596 in F-1. Another interesting
observation is that using 164 textual features alone
reached a comparable performance (0.664), but
the combination of acoustic and textual features
actually brought down the performance to 0.647.
One possible reason is that the acoustic informa-
tion has noise that confused the textual informa-
tion when combined. But this observation doesn’t
necessarily apply to other datasets. The signifi-
cance tests show that adding dialogic features im-
proved the baseline significantly. For example,
the model with both acoustic features and dialogic
features are significantly better than the one with
only acoustic features (p < 1e�6). In Table 3,
we listed the dialogic features with their relative
importance rank, which were obtained from rank-
ing their feature importance scores in the classifier.
We observe that “total interruptions so far” is the
most useful dialogic features to predict user senti-
ment. The sentiment detector trained will be inte-
grated in the end-to-end learning described later.

Dialogic Features

Relative Rank

of importance

total interruptions so far 1
interruptions 2
total button usages so far 3
total repetitions so far 4
repetition 5
button usage 6
total start over so far 7
start over 8

Table 3: Dialogic features’ relative importance
rank in sentiment detection.

Model Avg. of F-1 Std. of F-1 Max of F-1

Acoustic features only 0.635 0.027 0.686
Dialogic features only 0.596 0.001 0.596
Textual features only ⇤ 0.664 0.010 0.685
Textual + Dialogic ⇤ 0.672 0.011 0.700

Acoustic + Dialogic ⇤ 0.680 0.019 0.707
Acoustic + Textual 0.647 0.025 0.686

Acoustic + Dialogic + Text ⇤ 0.686 0.028 0.756

Table 4: Results of sentiment detectors using dif-
ferent features. The best result is highlighted in
bold and * indicates statistical significance com-
pared to the baseline, which is using acoustic fea-
tures only. (p < 0.0001)

6 Supervised Learning (SL)

We incorporated the detected user sentiment from
the previous section into a supervised learning
framework for training end-to-end dialog systems.
There are many studies on building a dialog sys-
tem in a supervised learning setting (Bordes and
Weston (2016); Eric and Manning (2017); Seo
et al. (2016); Liu and Lane (2017a); Li et al.
(2017); Williams et al. (2017)). Following these
approaches, we treated the problem of dialog pol-
icy learning as a classification problem, which is
to select actions among system action templates
given conversation history. Specifically, we de-
cided to adopt the framework of Hybrid Code Net-
work (HCN) introduced in Williams et al. (2017),
because it is the current state-of-the-art model. We
reimplemented HCN and used it as the baseline
system, given the absence of direct comparison on
DSTC1 data. One caveat is that HCN used ac-
tion masks (bit vectors indicating allowed actions
at certain dialog states) to prevent impossible sys-
tem actions, but we didn’t use hand-crafted ac-
tion masks in the supervised learning setting be-
cause manually designing action masks for 212 ac-
tion templates is very labor-intensive. This makes
our method more general and adaptive to differ-
ent tasks. All the dialog modules were trained



1513

together instead of separately. Therefore, our
method is end-to-end trainable and doesn’t require
human expert involvement.

We listed all the context features used in
Williams et al. (2017) in Table 11 in Appendix
A.3. In our model, we added one more set of con-
text features, the user-sentiment-related features.
For entity extraction, given that the entity values
in our dataset form a simple unique fixed set, we
used simple string matching. We conducted three
experiments: the first one used entity presences
as context features, which serves as the baseline;
the second one used entity presences in addition
to all the raw dialogic features mentioned in Ta-
ble 3; the third experiment used the baseline fea-
tures plus the predicted sentiment label by the pre-
built sentiment detector (converted to one-hot vec-
tor) instead of the raw dialogic features. We used
the entire DSTC1 dataset to train the supervised
model. The input is the normalized natural lan-
guage and the contexutal features, and the out-
put is the action template id. We kept the same
experiment setting in Williams et al. (2017), e.g.
last action taken was also used as a fea-
ture, along with word embeddings (Mikolov et al.,
2013) and bag-of-words; LSTM with 128 hidden-
units and AdaDelta optimizer (Zeiler, 2012) were
used to train the model.

The results of different models are shown in Ta-
ble 5. We observe that using the eight raw dia-
logic features did not improve turn-level F-1 score.
One possible reason is that a total of eight dialogic
features were added to the model, and some of
them might contain noises and therefore caused
the model to overfit. However, using predicted
sentiment information as an extra feature, which is
a more condensed information, outperformed the
other models both in terms of turn-level F-1 score
and dialog accuracy which indicates if all turns in
a dialog are correct. The difference in absolute F-
1 score is small because we have a relatively large
test set (5876 turns). But the unpaired one-tailed
t-test shows that p < 0.01 for both the F-1 and the
dialog accuracy. This suggests that including user
sentiment information in action planning is helpful
in a supervised learning setting.

7 Reinforcement Learning (RL)

In the previous section, we discussed including
sentiment features directly as a context feature in
a supervised learning model for end-to-end dialog

Model Weighted F-1 Dialog Acc.

HCN 0.4198 6.05%
HCN + raw dialogic features 0.4190 5.79%
HCN + predicted sentiment label⇤ 0.4261 6.55%

Table 5: Results of different SL models. The best
result is highlighted in bold. ⇤ indicates that the
result is significantly better than the baseline (p <
0.01). Dialog accuracy indicates if all turns in a
dialog are correct, so it’s low. For DSTC2 data,
the state-of-art dialog accuracy is 1.9%, consistent
with our results.

system training, which showed promising results.
But once a system operates at scale and interacts
with a large number of users, it is desirable for the
system to continue to learn autonomously using
reinforcement learning (RL). With RL, each turn
receives a measurement of goodness called reward
(Williams et al., 2017). Previously, training task-
oriented systems mainly relies on the delayed re-
ward about task success. Due to the lack of in-
formative immediate reward, the training takes a
long time to converge. In this work, we propose
to include user sentiment as immediate rewards to
expedite the reinforcement learning training pro-
cess and create a better user experience.

To use sentiment scores in the reward function,
we chose the policy gradient approach (Williams,
1992) and implemented the algorithm based on
Zhu (2017). The traditional reward function uses
a positive constant (e.g. 20) to reward the suc-
cess of the task, 0 or a negative constant to penal-
ize the failure of the task after certain number of
turns, and gives -1 to each extra turn to encourage
the system to complete the task sooner. However,
such reward function doesn’t consider any feed-
back from the end-user. It is natural for human
to consider conversational partner’s sentiment in
planning dialogs. So, we propose a set of new re-
ward functions that incorporate user sentiment to
emulate human behaviors.

The intuition of integrating sentiment in reward
functions is as follows. The ultimate evaluator of
dialog systems is the end-users. And user sen-
timent is a direct reflection of user satisfaction.
Therefore, we detected the user sentiment scores
from multimodal sources on the fly, and used them
as immediate rewards in an adaptive end-to-end
dialog training setting. This sentiment informa-
tion came directly from real users, which made the
system adapt to individual user’s sentiment as the



1514

dialog proceeds. Furthermore, the sentiment infor-
mation is independent of the task, so our method
doesn’t require any prior domain knowledge and
can be easily generalized to other domains. There
have been works that incorporated user informa-
tion into reward design (Su et al., 2015; Ultes
et al., 2017). But they used information from one
single channel and sometimes required manual la-
belling of the reward. Our approach utilizes infor-
mation from multiple channels and doesn’t involve
manual work once a sentiment detector is ready.

We built a simulated system in the same bus
information search domain to test the effective-
ness of using sentiment scores in the reward func-
tion. In this system, there are 3 entity types -
<departure>, <arrival>, and <time> -
and 5 actions, asking for different entities, and giv-
ing information. A simple action mask was used
to prevent impossible actions, such as giving in-
formation of an uncovered place. The inputs to
the system are the simulated user’s dialog acts and
the simulated sentiment sampled from a subset of
DSTC1, the CleanData, which will be described
later. The output of the system is the system action
template.

7.1 User simulator

Given that reinforcement learning requires feed-
back from the environment - in our case, the users
- and interacting with real users is always expen-
sive, we created a user simulator to interact with
the system. At the beginning of each dialog, the
simulated user is initiated with a goal consisting
of the three entities mentioned above and the goal
remains unchanged throughout the conversation.
The user responds to system’s questions with enti-
ties, which are placeholders like <departure>
instead of real values. To simulate ASR errors,
the simulated user’s act type occasionally changes
from “informing slot values” to “making noises”
at certain probabilities set by hand (10% in our
case). Some example dialogs along with their as-
sociated rewards are shown in Table 8 and 9 in
Appendix A.1.

We simulated user sentiment by sampling from
real data, the DSTC1 dataset. There are three steps
involved. First, we cleaned the DSTC1 dialogs
by removing the audio files with no ASR output
and high ASR errors. This resulted in a dataset
CleanData with 413 dialogs and 1918 user in-
puts. We observed that users accumulate their

sentiment as the conversation unfolds. When the
system repeatedly asks for the same entity, they
express stronger sentiment. Therefore, summary
statistics that record how many times certain en-
tities have been asked during the conversation is
representative of users’ accumulating sentiment.
We designed a set of summary statistics S that
record the statistics of system actions, e.g. how
many times the arrival place has been asked or the
schedule information has been given.

The second step is to create a mapping between
the five simulated system actions and the DSTC1
system actions. We do this by calculating a vector
sreal consisting of the values in S for each user ut-
terance in CleanData. sreal is used to compare
the similarity between the real dialog and the sim-
ulated dialog.

The final step is to sample from CleanData.
For each simulated user utterance, we calculated
the same vector ssim and compared it with each
sreal. There are two possible results. If there
are sreal equal to ssim,we would randomly sample
one from all the matched user utterances to rep-
resent the sentiment of the simulated user. But if
there is no sreal matching ssim, different strate-
gies would be applied based on the reward func-
tion used, which will be described in details later.
Once we have a sample, the eight dialogic fea-
tures of the sample utterance are used to calculate
the sentiment score. We didn’t use the acoustic or
the textual features because in a simulated setting,
only the dialogic features are valid.

7.2 Experiments

We designed four experiments with different re-
ward functions. A discount factor of 0.9 was ap-
plied to all the experiments. And the maximum
number of turns is 15. Following Williams et al.
(2017), we used LSTM with 32 hidden units for
the RNN in the HCN and AdaDelta for the op-
timization, and updated the reinforcement learn-
ing policy after each dialog. The ✏-greedy ex-
ploration strategy (Tokic, 2010) was applied here.
Given that the entire system was simulated, we
only used the presence of each entity and the last
action taken by the system as the context features,
and didn’t use bag-of-words or utterance embed-
ding features.

In order to evaluate the method, we froze the
policy after every 200 updates, and ran 500 simu-
lated dialogs to calculate the task success rate. We



1515

repeated the process 20 times and reported the av-
erage performance in Figure 1, 2 and Table 6.

7.2.1 Baseline

We define the baseline reward as follows without
any sentiment involvement.

Reward 1 Baseline
if success then

R1 = 20
else if failure then

R1 = �10
else if each proceeding turn then

R1 = �1
end if

7.2.2 Sentiment reward with random

samples (SRRS)

We designed the first simple reward function with
user sentiment as the immediate reward: senti-
ment with random samples (SRRS). We first drew
a sample from real data with matched context; if
there was no matched data, a random sample was
used instead. Because the amount of CleanData
is relatively small, so only 36% turns were cov-
ered by matched samples. If the sampled dia-
logic features were not all zeros, the sentiment
reward (SR) was calculated as a linear combina-
tion with tunable parameters. We chose it to be
-5P

neg

-P

neu

+10P

pos

for simplicity. When the
dialogic features were all zero, in most cases it
meant the user didn’t express an obvious senti-
ment, we set the reward to be -1.

Reward 2 SRRS
if success then

R2 = 20
else if failure then

R2 = �10
else if sample with all-zero dialogic features then

R2 = �1
else if sample with non-zero dialogic features then

R2=-5Pneg-Pneu+10Ppos
end if

7.2.3 Sentiment reward with repetition

penalty (SRRP)

Random samples in SRRS may result in extreme
sentiment data. So we used dialogic features to
approximate sentiment for the unmatched data.
Specifically, if there were repetitions, which cor-
relate with negative sentiment (see Table 3), we
assigned a penalty to that utterance. See Reward 3
Formula below for detailed parameters. 36% turns
were covered by real data samples, 15% turns had
no match in real data and had repetitions, and 33%
turns had no match and no repetition.

Moreover, we experimented with different
penalty weights. When we increased the repeti-
tion penalty to 5, the success rate was similar to
penalty of 2.5. However, when we increased the
penalty even further to 10, the success rate was
brought down by a large margin. Our interpreta-
tion is that increasing the repetition penalty to a
big value made the focus less on the real sentiment
samples but more on the repetitions, which did not
help the learning.

Reward 3 SRRP
if success then

R3 = 20
else if failure then

R3 = �10
else

if match then

if all-zero dialogic features then

R3 = �1
else if non-zero dialogic features then

R3=-5Pneg-Pneu+10Ppos
end if

else if repeated question then

R3 = �2.5
else

R3 = �1
end if

end if

7.2.4 Sentiment reward with repetition and

interruption penalties (SRRIP)

We observed in Section 5 that interruption is
the most important feature in detecting sentiment,
so if an interruption existed in the simulated user
input, we assumed it had a negative sentiment and
added an additional penalty of -1 to the previous
sentiment reward SRRP to test the effect of inter-
ruption. 7.5% turns have interruptions.

Reward 4 SRRIP
if success then

R4 = 20
else if failure then

R4 = �10
else

R4 = R3(SRRP )
if interruption then

R4 = R4 � 1
end if

end if

7.3 Experiment results

We evaluated every model on two metrics: dia-
log lengths and task success rates. We observed
in Figure 1 that all the sentiment reward functions,
even SRRS with random samples, reduced the av-
erage length of the dialogs, meaning that the sys-
tem finished the task faster. The rationale behind is
that by adapting to user sentiment, the model can
avoid unnecessary system actions to make systems
more effective.



1516

In terms of success rate, sentiment reward with
both repetition and interruption penalties (SRRIP)
performed the best (see Figure 2). In Figure 2, SR-
RIP is converging faster than the baseline. For ex-
ample, around 5000 iterations, it outperforms the
baseline by 5% in task success rate (60% vs 55%)
with statistical significance (p < 0.01). It also
converges to a better task success rate after 10000
iterations (92.4% vs 94.3%, p < 0.01).

Figure 1: Average dialog length of RL models
with different reward functions.

Figure 2: Average success rate of the baseline and
the best performing model, SRRIP.

We describe all models’ performance in Table
6 in terms of the convergent success rate calcu-
lated as the mean success rate after 10000 dialogs.
We observed that incorporating various sentiment
rewards improved the success rate and expedited
the training process overall with statistical signifi-
cance. We found that even sentiment reward with
random samples (SRRS) outperformed the base-
line after convergence. By adding penalties for

Model

Convergent

success rate

Baseline 0.924
SRRS 0.938⇤
SRRP 0.941⇤

SRRIP 0.943⇤

Table 6: Convergent success rate of RL models
with different reward functions. It is calculated as
the mean success rate after 10000 dialogs. The
best result is highlighted in bold. ⇤ indicates that
the result is significantly better than the baseline
(p < 0.01).

repetition, the algorithm covered more data points,
and therefore, the task success rate and the con-
vergence speed improved. We also found that pe-
nalizing interruption and repetition together (SR-
RIP) achieved a slightly better performance com-
pared to penalizing repetition only (SRRP). This
suggests that interruptions is another factor to con-
sider when approximating sentiment. But the per-
formances between SRRP and SRRIP is not sig-
nificant. Our guess is that only 7.5% turns in our
data contains interruption and the penalty is just
an extra -1, so the model confused this signal with
noises. But given more interruptions in the data,
interruptions could still be helpful.

8 Discussion and Future Work

The intuition behind the good performance of
models with user sentiment is that the learned pol-
icy is in general more sentiment adaptive. For ex-
ample, there are some system actions that have the
same intention but with different surface forms,
especially for error-handling strategies. By ana-
lyzing the results, we found that when the sen-
timent adaptive system detected a negative senti-
ment from the user, it chose to respond the user
with a more detailed error-handling strategy than
a general one. For example, it chose the tem-
plate “Where are you leaving from? For exam-
ple, you can say, <place>”, while the baseline
model would respond with “Where would you like
to leave from?”, which doesn’t provide details to
help the user compared with the previous tem-
plate. As we all know, dealing with a disappointed
user to proceed, providing more details is always
better. One example dialog is shown in Table 7.
There was no written rules to force the model to
choose one specific template under certain situ-



1517

Sentiment Adaptive Sys-

tem

Baseline System without

Sentiment

SYS: The <route>.
Where would you like to
leave from?

SYS: The <route>.
Where would you like to
leave from?

USR: Yeah [negative sen-
timent]

USR: Yeah

SYS: Where are you leav-
ing from? For example,
you can say, <place>.

SYS: Right. Where would
you like to leave from?

Table 7: An example dialog by different sys-
tems in the supervised learning setting. The
sentiment-adaptive system gives a more detailed
error-handling strategy than the baseline system.

ations, so the model learned these subtle differ-
ences on its own. Some may argue that the sys-
tem could always use a more detailed template to
better guide the user instead of distinguishing be-
tween two similar system templates. But this is not
necessarily true. Ideally, we want the system to be
succinct initially to save users’ time, because we
observe that users, especially repeated users, tend
to interrupt long and detailed system utterances. If
the user has attempted to answer the system ques-
tion but failed, then it’s beneficial to provide de-
tailed guidance.

The performance of the sentiment detector is a
key factor in our work. So in the future, we plan
to incorporate features from more channels such
as vision to further improve the sentiment predic-
tor’s performance, and potentially further improve
the performance of the dialog system. We also
want to explore more in user sentiment simula-
tion, for example, instead of randomly sampling
data for the uncovered cases, we could use linear
interpolation to create a similarity score between
ssim and sreal, and choose the user utterance with
the highest score. Furthermore, reward shaping
(Ng et al., 1999; Ferreira and Lefèvre, 2013) is an
important technique in RL. Specifically, Ferreira
and Lefèvre (2013) talked about incorporating ex-
pert knowledge in reward design. We also plan to
integrate information from different sources into
reward function and apply reward shaping. Be-
sides, creating a good user simulator is also very
important in the RL training. There are some more
advanced methods to create user simulators. For
example, Liu and Lane (2017b) described how to
optimize the agent and the user simulators jointly
using RL. We plan to apply our sentiment reward
functions in this framework in the future.

9 Conclusion

We proposed to detect user sentiment from multi-
modal channels and incorporate the detected sen-
timent as feedback into adaptive end-to-end dia-
log system training to make the system more ef-
fective and user-adaptive. We included sentiment
information directly as a context feature in the su-
pervised learning framework and used sentiment
scores as immediate rewards in the reinforcement
learning setting. Experiments suggest that incor-
porating user sentiment is helpful in reducing the
dialog length and increasing the task success rate
in both SL and RL settings. This work proposed
an adaptive methodology to incorporate user sen-
timent in end-to-end dialog policy learning and
showed promising results on a bus information
search task. We believe this approach can be easily
generalized to other domains given its end-to-end
training procedure and task independence.

Acknowledgments

The work is partly supported by Intel Lab Re-
search Gift.

References

Jaime C Acosta. 2009. Using emotion to gain rapport
in a spoken dialog system. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics, Companion
Volume: Student Research Workshop and Doctoral
Consortium, pages 49–54. Association for Compu-
tational Linguistics.

Jaime C Acosta and Nigel G Ward. 2011. Achieving
rapport with turn-by-turn, user-responsive emotional
coloring. Speech Communication, 53(9-10):1137–
1148.

Dario Bertero, Farhad Bin Siddique, Chien-Sheng Wu,
Yan Wan, Ricky Ho Yin Chan, and Pascale Fung.
2016. Real-time speech emotion and sentiment
recognition for interactive dialogue systems. In
EMNLP, pages 1042–1047.

Antoine Bordes and Jason Weston. 2016. Learn-
ing end-to-end goal-oriented dialog. arXiv preprint
arXiv:1605.07683.

Felix Burkhardt, Markus Van Ballegooy, Klaus-Peter
Engelbrecht, Tim Polzehl, and Joachim Stegmann.
2009. Emotion detection in dialog systems: appli-
cations, strategies and challenges. In Affective Com-
puting and Intelligent Interaction and Workshops,
2009. ACII 2009. 3rd International Conference on,
pages 1–6. IEEE.



1518

Laurence Devillers, Lori Lamel, and Ioana Vasilescu.
2003. Emotion detection in task-oriented spo-
ken dialogues. In Multimedia and Expo, 2003.
ICME’03. Proceedings. 2003 International Confer-
ence on, volume 3, pages III–549. IEEE.

Laurence Devillers, Ioana Vasilescu, and Lori Lamel.
2002. Annotation and detection of emotion in a
task-oriented human-human dialog corpus. In pro-
ceedings of ISLE Workshop.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng
Gao, Yun-Nung Chen, Faisal Ahmed, and Li Deng.
2016. End-to-end reinforcement learning of dia-
logue agents for information access. arXiv preprint
arXiv:1609.00777.

Mihail Eric and Christopher D Manning. 2017. A
copy-augmented sequence-to-sequence architecture
gives good performance on task-oriented dialogue.
arXiv preprint arXiv:1701.04024.

Florian Eyben, Felix Weninger, Florian Gross, and
Björn Schuller. 2013. Recent developments in
opensmile, the munich open-source multimedia fea-
ture extractor. In Proceedings of the 21st ACM
International Conference on Multimedia, MM ’13,
pages 835–838, New York, NY, USA. ACM.

Emmanuel Ferreira and Fabrice Lefèvre. 2013. Expert-
based reward shaping and exploration scheme for
boosting policy learning of dialogue management.
In Automatic Speech Recognition and Understand-
ing (ASRU), 2013 IEEE Workshop on, pages 108–
113. IEEE.

C. M. Lee and Shrikanth Narayanan. 2005. Toward
Detecting Emotions in Spoken Dialogs. In IEEE
Transactions on Speech and Audio Processing, vol-
ume 12, pages 293–303.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
2000. A stochastic model of human-machine inter-
action for learning dialog strategies. IEEE Transac-
tions on speech and audio processing, 8(1):11–23.

Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong
Li, Jianfeng Gao, and Yun-Nung Chen. 2016. A
user simulator for task-completion dialogues. arXiv
preprint arXiv:1612.05688.

Xuijun Li, Yun-Nung Chen, Lihong Li, and Jianfeng
Gao. 2017. End-to-end task-completion neural dia-
logue systems. arXiv preprint arXiv:1703.01008.

Jackson Liscombe, Giuseppe Riccardi, and Dilek
Hakkani-Tür. 2005. Using context to improve emo-
tion detection in spoken dialog systems. In Ninth
European Conference on Speech Communication
and Technology.

Bing Liu and Ian Lane. 2017a. An end-to-end trainable
neural network model with belief tracking for task-
oriented dialog. arXiv preprint arXiv:1708.05956.

Bing Liu and Ian Lane. 2017b. Iterative policy learning
in end-to-end trainable task-oriented neural dialog
models. arXiv preprint arXiv:1709.06136.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Andrew Y Ng, Daishi Harada, and Stuart Russell.
1999. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In
ICML, volume 99, pages 278–287.

Tin Lay Nwe, Say Wei Foo, and Liyanage C De Silva.
2003. Speech emotion recognition using hidden
markov models. Speech communication, 41(4):603–
623.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Johannes Pittermann, Angela Pittermann, and Wolf-
gang Minker. 2010. Emotion recognition and adap-
tation in spoken dialogue systems. International
Journal of Speech Technology, 13(1):49–60.

Antoine Raux, Brian Langner, Dan Bohus, Alan W
Black, and Maxine Eskenazi. 2005. Lets go pub-
lic! taking a spoken dialog system to the real world.
In in Proc. of Interspeech 2005. Citeseer.

Björn Schuller, Gerhard Rigoll, and Manfred Lang.
2003. Hidden markov model-based speech emo-
tion recognition. In Multimedia and Expo, 2003.
ICME’03. Proceedings. 2003 International Confer-
ence on, volume 1, pages I–401. IEEE.

Björn Schuller, Stefan Steidl, Anton Batliner, Alessan-
dro Vinciarelli, Klaus Scherer, Fabien Ringeval, Mo-
hamed Chetouani, Felix Weninger, Florian Eyben,
Erik Marchi, et al. 2013. The interspeech 2013 com-
putational paralinguistics challenge: social signals,
conflict, emotion, autism. In Proceedings INTER-
SPEECH 2013, 14th Annual Conference of the Inter-
national Speech Communication Association, Lyon,
France.

Minjoon Seo, Ali Farhadi, and Hannaneh Hajishirzi.
2016. Query-regression networks for machine com-
prehension. arXiv preprint arXiv:1606.04582.

Satinder Singh, Diane Litman, Michael Kearns, and
Marilyn Walker. 2002. Optimizing dialogue man-
agement with reinforcement learning: Experiments
with the njfun system. Journal of Artificial Intelli-
gence Research, 16:105–133.

Pei-Hao Su, David Vandyke, Milica Gasic, Dongho
Kim, Nikola Mrksic, Tsung-Hsien Wen, and Steve

http://doi.org/10.1145/2502081.2502224
http://doi.org/10.1145/2502081.2502224
http://doi.org/10.1145/2502081.2502224
http://ict.usc.edu/pubs/Toward%20Detecting%20Emotions%20in%20Spoken%20Dialogs.pdf
http://ict.usc.edu/pubs/Toward%20Detecting%20Emotions%20in%20Spoken%20Dialogs.pdf


1519

Young. 2015. Learning from real users: Rating di-
alogue success with neural networks for reinforce-
ment learning in spoken dialogue systems. arXiv
preprint arXiv:1508.03386.

Michel Tokic. 2010. Adaptive "-greedy exploration
in reinforcement learning based on value differ-
ences. In Annual Conference on Artificial Intelli-
gence, pages 203–210. Springer.

Stefan Ultes, Paweł Budzianowski, Inigo Casanueva,
Nikola Mrkšic, Lina Rojas-Barahona, Pei-Hao Su,
Tsung-Hsien Wen, Milica Gašic, and Steve Young.
2017. Domain-independent user satisfaction reward
estimation for dialogue policy learning. In Proc. In-
terspeech, pages 1721–1725.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562.

Jason Williams, Kavosh Asadi, and Geoffrey Zweig.
2017. Hybrid code networks: Practical and efficient
end-to-end dialog control with supervised and rein-
forcement learning. In Proceedings of 55th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2017). Association for Computational
Linguistics.

Jason D Williams and Steve Young. 2007. Partially
observable markov decision processes for spoken
dialog systems. Computer Speech & Language,
21(2):393–422.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Zhou Yu, Alan W Black, and Alexander I Rudnicky.
2017. Learning conversational systems that inter-
leave task and non-task content. IJCAI.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

Tiancheng Zhao and Maxine Eskenazi. 2016. To-
wards end-to-end learning for dialog state tracking
and management using deep reinforcement learning.
arXiv preprint arXiv:1606.02560.

Yuke Zhu. 2017. tensorflow-reinforce.
https://github.com/yukezhu/

tensorflow-reinforce.

http://github.com/yukezhu/tensorflow-reinforce
http://github.com/yukezhu/tensorflow-reinforce

