
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 2389–2398,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Improving Hypernymy Detection
with an Integrated Path-based and Distributional Method

Vered Shwartz Yoav Goldberg Ido Dagan
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

vered1986@gmail.com yoav.goldberg@gmail.com dagan@cs.biu.ac.il

Abstract

Detecting hypernymy relations is a key
task in NLP, which is addressed in
the literature using two complemen-
tary approaches. Distributional methods,
whose supervised variants are the cur-
rent best performers, and path-based meth-
ods, which received less research atten-
tion. We suggest an improved path-based
algorithm, in which the dependency paths
are encoded using a recurrent neural net-
work, that achieves results comparable
to distributional methods. We then ex-
tend the approach to integrate both path-
based and distributional signals, signifi-
cantly improving upon the state-of-the-art
on this task.

1 Introduction

Hypernymy is an important lexical-semantic rela-
tion for NLP tasks. For instance, knowing that
Tom Cruise is an actor can help a question an-
swering system answer the question “which ac-
tors are involved in Scientology?”. While seman-
tic taxonomies, like WordNet (Fellbaum, 1998),
define hypernymy relations between word types,
they are limited in scope and domain. Therefore,
automated methods have been developed to deter-
mine, for a given term-pair (x, y), whether y is an
hypernym of x, based on their occurrences in a
large corpus.

For a couple of decades, this task has been ad-
dressed by two types of approaches: distributional,
and path-based. In distributional methods, the de-
cision whether y is a hypernym of x is based on
the distributional representations of these terms.
Lately, with the popularity of word embeddings
(Mikolov et al., 2013), most focus has shifted to-
wards supervised distributional methods, in which

each (x, y) term-pair is represented using some
combination of the terms’ embedding vectors.

In contrast to distributional methods, in which
the decision is based on the separate contexts of
x and y, path-based methods base the decision on
the lexico-syntactic paths connecting the joint oc-
currences of x and y in a corpus. Hearst (1992)
identified a small set of frequent paths that indicate
hypernymy, e.g. Y such as X. Snow et al. (2004)
represented each (x, y) term-pair as the multiset of
dependency paths connecting their co-occurrences
in a corpus, and trained a classifier to predict hy-
pernymy, based on these features.

Using individual paths as features results in a
huge, sparse feature space. While some paths
are rare, they often consist of certain unimportant
components. For instance, “Spelt is a species of
wheat” and “Fantasy is a genre of fiction” yield
two different paths: X be species of Y and X be
genre of Y, while both indicating that X is-a Y. A
possible solution is to generalize paths by replac-
ing words along the path with their part-of-speech
tags or with wild cards, as done in the PATTY sys-
tem (Nakashole et al., 2012).

Overall, the state-of-the-art path-based methods
perform worse than the distributional ones. This
stems from a major limitation of path-based meth-
ods: they require that the terms of the pair oc-
cur together in the corpus, limiting the recall of
these methods. While distributional methods have
no such requirement, they are usually less precise
in detecting a specific semantic relation like hy-
pernymy, and perform best on detecting broad se-
mantic similarity between terms. Though these
approaches seem complementary, there has been
rather little work on integrating them (Mirkin et
al., 2006; Kaji and Kitsuregawa, 2008).

In this paper, we present HypeNET, an inte-
grated path-based and distributional method for
hypernymy detection. Inspired by recent progress

2389

in relation classification, we use a long short-
term memory (LSTM) network (Hochreiter and
Schmidhuber, 1997) to encode dependency paths.
In order to create enough training data for our net-
work, we followed previous methodology of con-
structing a dataset based on knowledge resources.

We first show that our path-based approach, on
its own, substantially improves performance over
prior path-based methods, yielding performance
comparable to state-of-the-art distributional meth-
ods. Our analysis suggests that the neural path rep-
resentation enables better generalizations. While
coarse-grained generalizations, such as replacing a
word by its POS tag, capture mostly syntactic sim-
ilarities between paths, HypeNET captures also
semantic similarities.

We then show that we can easily integrate dis-
tributional signals in the network. The integration
results confirm that the distributional and path-
based signals indeed provide complementary in-
formation, with the combined model yielding an
improvement of up to 14 F1 points over each indi-
vidual model.1

2 Background

We introduce the two main approaches for hyper-
nymy detection: distributional (Section 2.1), and
path-based (Section 2.2). We then discuss the re-
cent use of recurrent neural networks in the related
task of relation classification (Section 2.3).

2.1 Distributional Methods

Hypernymy detection is commonly addressed us-
ing distributional methods. In these methods, the
decision whether y is a hypernym of x is based on
the distributional representations of the two terms,
i.e., the contexts with which each term occurs sep-
arately in the corpus.

Earlier methods developed unsupervised mea-
sures for hypernymy, starting with symmetric sim-
ilarity measures (Lin, 1998), and followed by di-
rectional measures based on the distributional in-
clusion hypothesis (Weeds and Weir, 2003; Kotler-
man et al., 2010). This hypothesis states that the
contexts of a hyponym are expected to be largely
included in those of its hypernym. More recent
work (Santus et al., 2014; Rimell, 2014) introduce
new measures, based on the assumption that the

1Our code and data are available in:
https://github.com/vered1986/HypeNET

most typical linguistic contexts of a hypernym are
less informative than those of its hyponyms.

More recently, the focus of the distributional ap-
proach shifted to supervised methods. In these
methods, the (x, y) term-pair is represented by a
feature vector, and a classifier is trained on these
vectors to predict hypernymy. Several methods
are used to represent term-pairs as a combination
of each term’s embeddings vector: concatenation
~x⊕~y (Baroni et al., 2012), difference ~y−~x (Roller
et al., 2014; Weeds et al., 2014), and dot-product
~x · ~y. Using neural word embeddings (Mikolov et
al., 2013; Pennington et al., 2014), these methods
are easy to apply, and show good results (Baroni
et al., 2012; Roller et al., 2014).

2.2 Path-based Methods

A different approach to detecting hypernymy be-
tween a pair of terms (x, y) considers the lexico-
syntactic paths that connect the joint occurrences
of x and y in a large corpus. Automatic acquisi-
tion of hypernyms from free text, based on such
paths, was first proposed by Hearst (1992), who
identified a small set of lexico-syntactic paths that
indicate hypernymy relations (e.g. Y such as X, X
and other Y).

In a later work, Snow et al. (2004) learned to de-
tect hypernymy. Rather than searching for specific
paths that indicate hypernymy, they represent each
(x, y) term-pair as the multiset of all dependency
paths that connect x and y in the corpus, and train
a logistic regression classifier to predict whether y
is a hypernym of x, based on these paths.

Paths that indicate hypernymy are those that
were assigned high weights by the classifier. The
paths identified by this method were shown to
subsume those found by Hearst (1992), yield-
ing improved performance. Variations of Snow
et al.’s (2004) method were later used in tasks
such as taxonomy construction (Snow et al., 2006;
Kozareva and Hovy, 2010; Carlson et al., 2010;
Riedel et al., 2013), analogy identification (Tur-
ney, 2006), and definition extraction (Borg et al.,
2009; Navigli and Velardi, 2010).

A major limitation in relying on lexico-
syntactic paths is the sparsity of the feature space.
Since similar paths may somewhat vary at the lex-
ical level, generalizing such variations into more
abstract paths can increase recall. The PATTY al-
gorithm (Nakashole et al., 2012) applied such gen-
eralizations for the purpose of acquiring a taxon-

2390

parrot is a bird
NOUN VERB DET NOUN

NSUBJ

ATTR

DET

Figure 1: An example dependency tree of the sen-
tence “parrot is a bird”, with x=parrot and y=bird, repre-
sented in our notation as X/NOUN/nsubj/< be/VERB/ROOT/-
Y/NOUN/attr/>.

omy of term relations from free text. For each
path, they added generalized versions in which a
subset of words along the path were replaced by
either their POS tags, their ontological types or
wild-cards. This generalization increased recall
while maintaining the same level of precision.

2.3 RNNs for Relation Classification

Relation classification is a related task whose goal
is to classify the relation that is expressed between
two target terms in a given sentence to one of pre-
defined relation classes. To illustrate, consider
the following sentence, from the SemEval-2010
relation classification task dataset (Hendrickx et
al., 2009): “The [apples]e1 are in the [basket]e2”.
Here, the relation expressed between the target en-
tities is Content− Container(e1, e2).

The shortest dependency paths between the tar-
get entities were shown to be informative for this
task (Fundel et al., 2007). Recently, deep learning
techniques showed good performance in capturing
the indicative information in such paths.

In particular, several papers show improved per-
formance using recurrent neural networks (RNN)
that process a dependency path edge-by-edge. Xu
et al. (2015; 2016) apply a separate long short-
term memory (LSTM) network to each sequence
of words, POS tags, dependency labels and Word-
Net hypernyms along the path. A max-pooling
layer on the LSTM outputs is used as the in-
put of a network that predicts the classification.
Other papers suggest incorporating additional net-
work architectures to further improve performance
(Nguyen and Grishman, 2015; Liu et al., 2015).

While relation classification and hypernymy de-
tection are both concerned with identifying se-
mantic relations that hold for pairs of terms, they
differ in a major respect. In relation classification
the relation should be expressed in the given text,
while in hypernymy detection, the goal is to rec-
ognize a generic lexical-semantic relation between
terms that holds in many contexts. Accordingly,
in relation classification a term-pair is represented

by a single dependency path, while in hypernymy
detection it is represented by the multiset of all de-
pendency paths in which they co-occur in the cor-
pus.

3 LSTM-based Hypernymy Detection

We present HypeNET, an LSTM-based method
for hypernymy detection. We first focus on im-
proving path representation (Section 3.1), and then
integrate distributional signals into our network,
resulting in a combined method (Section 3.2).

3.1 Path-based Network
Similarly to prior work, we represent each depen-
dency path as a sequence of edges that leads from
x to y in the dependency tree.2 Each edge contains
the lemma and part-of-speech tag of the source
node, the dependency label, and the edge direction
between two subsequent nodes. We denote each
edge as lemma/POS/dep/dir. See figure 1 for
an illustration.

Rather than treating an entire dependency path
as a single feature, we encode the sequence of
edges using a long short-term memory (LSTM)
network. The vectors obtained for the different
paths of a given (x, y) pair are pooled, and the re-
sulting vector is used for classification. Figure 2
depicts the overall network structure, which is de-
scribed below.

Edge Representation We represent each edge
by the concatenation of its components’ vectors:

~ve = [~vl, ~vpos, ~vdep, ~vdir]

where ~vl, ~vpos, ~vdep, ~vdir represent the embedding
vectors of the lemma, part-of-speech, dependency
label and dependency direction (along the path
from x to y), respectively.

Path Representation For a path p composed of
edges e1, ..., ek, the edge vectors ~ve1 , ..., ~vek

are
fed in order to an LSTM encoder, resulting in
a vector ~op representing the entire path p. The
LSTM architecture is effective at capturing tem-
poral patterns in sequences. We expect the train-
ing procedure to drive the LSTM encoder to focus
on parts of the path that are more informative for
the classification task while ignoring others.

2Like Snow et al. (2004), we added for each path, addi-
tional paths containing single daughters of x or y not already
contained in the path, referred by Snow et al. (2004) as “satel-
lite edges”. This enables including paths like Such Y as X, in
which the word “such” is not in the path between x and y.

2391

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

X/NOUN/dobj/>define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

Path LSTM Term-pair Classifier

~op

average
pooling

~vwx

(x, y)

classification
(softmax)

~vwy

~vxy

Embeddings:
lemma
POS
dependency label
direction

Figure 2: An illustration of term-pair classification. Each term-pair is represented by several paths. Each path is a sequence of
edges, and each edge consists of four components: lemma, POS, dependency label and dependency direction. Each edge vector
is fed in sequence into the LSTM, resulting in a path embedding vector ~op. The averaged path vector becomes the term-pair’s
feature vector, used for classification. The dashed ~vwx , ~vwy vectors refer to the integrated network described in Section 3.2.

Term-Pair Classification Each (x, y) term-pair
is represented by the multiset of lexico-syntactic
paths that connected x and y in the corpus, de-
noted as paths(x, y), while the supervision is
given for the term pairs. We represent each (x, y)
term-pair as the weighted-average of its path vec-
tors, by applying average pooling on its path vec-
tors, as follows:

~vxy = ~vpaths(x,y) =
∑

p∈paths(x,y) fp,(x,y)· ~op∑
p∈paths(x,y) fp,(x,y)

(1)

where fp,(x,y) is the frequency of p in paths(x, y).
We then feed this path vector to a single-layer net-
work that performs binary classification to decide
whether y is a hypernym of x.

c = softmax(W · ~vxy) (2)

c is a 2-dimensional vector whose components
sum to 1, and we classify a pair as positive if
c[1] > 0.5.

Implementation Details To train the network,
we used PyCNN.3 We minimize the cross en-
tropy loss using gradient-based optimization, with
mini-batches of size 10 and the Adam update rule
(Kingma and Ba, 2014). Regularization is applied
by a dropout on each of the components’ embed-
dings. We tuned the hyper-parameters (learning
rate and dropout rate) on the validation set (see the
appendix for the hyper-parameters values).

We initialized the lemma embeddings with the
pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia. We tried both

3https://github.com/clab/cnn

the 50-dimensional and 100-dimensional embed-
ding vectors and selected the ones that yield bet-
ter performance on the validation set.4 The other
embeddings, as well as out-of-vocabulary lemmas,
are initialized randomly. We update all embedding
vectors during training.

3.2 Integrated Network

The network presented in Section 3.1 classifies
each (x, y) term-pair based on the paths that con-
nect x and y in the corpus. Our goal was to im-
prove upon previous path-based methods for hy-
pernymy detection, and we show in Section 6
that our network indeed outperforms them. Yet,
as path-based and distributional methods are con-
sidered complementary, we present a simple way
to integrate distributional features in the network,
yielding improved performance.

We extended the network to take into account
distributional information on each term. In-
spired by the supervised distributional concatena-
tion method (Baroni et al., 2012), we simply con-
catenate x and y word embeddings to the (x, y)
feature vector, redefining ~vxy:

~vxy = [~vwx , ~vpaths(x,y), ~vwy] (3)

where ~vwx and ~vwy are x and y’s word embed-
dings, respectively, and ~vpaths(x,y) is the averaged
path vector defined in equation 1. This way, each
(x, y) pair is represented using both the distribu-
tional features of x and y, and their path-based
features.

4Higher-dimensional embeddings seem not to improve
performance, while hurting the training runtime.

2392

resource relations
WordNet instance hypernym, hypernym
DBPedia type
Wikidata subclass of, instance of

Yago subclass of

Table 1: Hypernymy relations in each resource.

4 Dataset

4.1 Creating Instances

Neural networks typically require a large amount
of training data, whereas the existing hypernymy
datasets, like BLESS (Baroni and Lenci, 2011),
are relatively small. Therefore, we followed the
common methodology of creating a dataset us-
ing distant supervision from knowledge resources
(Snow et al., 2004; Riedel et al., 2013). Fol-
lowing Snow et al. (2004), who constructed their
dataset based on WordNet hypernymy, and aiming
to create a larger dataset, we extract hypernymy
relations from several resources: WordNet (Fell-
baum, 1998), DBPedia (Auer et al., 2007), Wiki-
data (Vrandečić, 2012) and Yago (Suchanek et al.,
2007).

All instances in our dataset, both positive and
negative, are pairs of terms that are directly re-
lated in at least one of the resources. These re-
sources contain thousands of relations, some of
which indicate hypernymy with varying degrees of
certainty. To avoid including questionable relation
types, we consider as denoting positive examples
only indisputable hypernymy relations (Table 1),
which we manually selected from the set of hyper-
nymy indicating relations in Shwartz et al. (2015).

Term-pairs related by other relations (including
hyponymy), are considered as negative instances.
Using related rather than random term-pairs as
negative instances tests our method’s ability to dis-
tinguish between hypernymy and other kinds of
semantic relatedness. We maintain a ratio of 1:4
positive to negative pairs in the dataset.

Like Snow et al. (2004), we include only term-
pairs that have joint occurrences in the corpus, re-
quiring at least two different dependency paths for
each pair.

4.2 Random and Lexical Dataset Splits

As our primary dataset, we perform standard ran-
dom splitting, with 70% train, 25% test and 5%
validation sets.

As pointed out by Levy et al. (2015), super-
vised distributional lexical inference methods tend

train test val all
random split 49,475 17,670 3,534 70,679
lexical split 20,335 6,610 1,350 28,295

Table 2: The number of instances in each dataset.

to perform “lexical memorization”, i.e., instead of
learning a relation between the two terms, they
mostly learn an independent property of a single
term in the pair: whether it is a “prototypical hy-
pernym” or not. For instance, if the training set
contains term-pairs such as (dog, animal), (cat,
animal), and (cow, animal), all annotated as posi-
tive examples, the algorithm may learn that animal
is a prototypical hypernym, classifying any new (x,
animal) pair as positive, regardless of the relation
between x and animal. Levy et al. (2015) sug-
gested to split the train and test sets such that each
will contain a distinct vocabulary (“lexical split”),
in order to prevent the model from overfitting by
lexical memorization.

To investigate such behaviors, we present re-
sults also for a lexical split of our dataset. In this
case, we split the train, test and validation sets
such that each contains a distinct vocabulary. We
note that this differs from Levy et al. (2015), who
split only the train and the test sets, and dedicated a
subset of the train for validation. We chose to devi-
ate from Levy et al. (2015) because we noticed that
when the validation set contains terms from the
train set, the model is rewarded for lexical mem-
orization when tuning the hyper-parameters, con-
sequently yielding suboptimal performance on the
lexically-distinct test set. When each set has a dis-
tinct vocabulary, the hyper-parameters are tuned
to avoid lexical memorization and are likely to
perform better on the test set. We tried to keep
roughly the same 70/25/5 ratio in our lexical split.5

The sizes of the two datasets are shown in Table 2.
Indeed, training a model on a lexically split

dataset may result in a more general model, that
can better handle pairs consisting of two unseen
terms during inference. However, we argue that
in the common applied scenario, the inference in-
volves an unseen pair (x, y), in which x and/or
y have already been observed separately. Models
trained on a random split may introduce the model
with a term’s “prior probability” of being a hyper-
nym or a hyponym, and this information can be
exploited beneficially at inference time.

5The lexical split discards many pairs consisting of cross-
set terms.

2393

path
X/NOUN/dobj/> establish/VERB/ROOT/- as/ADP/prep/< Y/NOUN/pobj/<

X/NOUN/dobj/> VERB as/ADP/prep/< Y/NOUN/pobj/<
X/NOUN/dobj/> * as/ADP/prep/< Y/NOUN/pobj/<

X/NOUN/dobj/> establish/VERB/ROOT/- ADP Y/NOUN/pobj/<
X/NOUN/dobj/> establish/VERB/ROOT/- * Y/NOUN/pobj/<

Table 3: Example generalizations of X was established as Y.

5 Baselines

We compare HypeNET with several state-of-the-
art methods for hypernymy detection, as described
in Section 2: path-based methods (Section 5.1),
and distributional methods (Section 5.2). Due to
different works using different datasets and cor-
pora, we replicated the baselines rather than com-
paring to the reported results.

We use the Wikipedia dump from May 2015 as
the underlying corpus of all the methods, and parse
it using spaCy.6 We perform model selection on
the validation set to tune the hyper-parameters of
each method.7 The best hyper-parameters are re-
ported in the appendix.

5.1 Path-based Methods

Snow We follow the original paper, and extract
all shortest paths of four edges or less between
terms in a dependency tree. Like Snow et al.
(2004), we add paths with “satellite edges”, i.e.,
single words not already contained in the depen-
dency path, which are connected to either X or Y,
allowing paths like such Y as X. The number of
distinct paths was 324,578. We apply χ2 feature
selection to keep only the 100,000 most informa-
tive paths and train a logistic regression classifier.

Generalization We also compare our method
to a baseline that uses generalized dependency
paths. Following PATTY’s approach to general-
izing paths (Nakashole et al., 2012), we replace
edges with their part-of-speech tags as well as with
wild cards. We generate the powerset of all possi-
ble generalizations, including the original paths.
See Table 3 for examples. The number of features
after generalization went up to 2,093,220. Simi-
larly to the first baseline, we apply feature selec-
tion, this time keeping the 1,000,000 most infor-
mative paths, and train a logistic regression classi-
fier over the generalized paths.8

6https://spacy.io/
7We applied grid search for a range of values, and picked

the ones that yield the highest F1 score on the validation set.
8We also tried keeping the 100,000 most informative

paths, but the performance was worse.

5.2 Distributional Methods
Unsupervised SLQS (Santus et al., 2014) is
an entropy-based measure for hypernymy detec-
tion, reported to outperform previous state-of-
the-art unsupervised methods (Weeds and Weir,
2003; Kotlerman et al., 2010). The original paper
was evaluated on the BLESS dataset (Baroni and
Lenci, 2011), which consists of mostly frequent
words. Applying the vanilla settings of SLQS on
our dataset, that contains also rare terms, resulted
in low performance. Therefore, we received as-
sistance from Enrico Santus, who kindly provided
the results of SLQS on our dataset after tuning the
system as follows.

The validation set was used to tune the thresh-
old for classifying a pair as positive, as well as the
maximum number of each term’s most associated
contexts (N). In contrast to the original paper, in
which the number of each term’s contexts is fixed
to N , in this adaptation it was set to the minimum
between the number of contexts with LMI score
above zero and N . In addition, the SLQS scores
were not multiplied by the cosine similarity scores
between terms, and terms were lemmatized prior
to computing the SLQS scores, significantly im-
proving recall.

As our results suggest, while this method is
state-of-the-art for unsupervised hypernymy de-
tection, it is basically designed for classifying
specificity level of related terms, rather than hy-
pernymy in particular.

Supervised To represent term-pairs with distri-
butional features, we tried several state-of-the-art
methods: concatenation ~x⊕~y (Baroni et al., 2012),
difference ~y − ~x (Roller et al., 2014; Weeds et al.,
2014), and dot-product ~x · ~y. We downloaded sev-
eral pre-trained embeddings (Mikolov et al., 2013;
Pennington et al., 2014) of different sizes, and
trained a number of classifiers: logistic regression,
SVM, and SVM with RBF kernel, which was re-
ported by Levy et al. (2015) to perform best in this
setting. We perform model selection on the val-
idation set to select the best vectors, method and
regularization factor (see the appendix).

2394

random split lexical split
method precision recall F1 precision recall F1

Path-based
Snow 0.843 0.452 0.589 0.760 0.438 0.556
Snow + Gen 0.852 0.561 0.676 0.759 0.530 0.624
HypeNET Path-based 0.811 0.716 0.761 0.691 0.632 0.660

Distributional SLQS (Santus et al., 2014) 0.491 0.737 0.589 0.375 0.610 0.464
Best supervised (concatenation) 0.901 0.637 0.746 0.754 0.551 0.637

Combined HypeNET Integrated 0.913 0.890 0.901 0.809 0.617 0.700

Table 4: Performance scores of our method compared to the path-based baselines and the state-of-the-art distributional methods
for hypernymy detection, on both variations of the dataset – with lexical and random split to train / test / validation.

6 Results

Table 4 displays performance scores of HypeNET
and the baselines. HypeNET Path-based is our
path-based recurrent neural network model (Sec-
tion 3.1) and HypeNET Integrated is our combined
method (Section 3.2). Comparing the path-based
methods shows that generalizing paths improves
recall while maintaining similar levels of preci-
sion, reassessing the behavior found in Nakas-
hole et al. (2012). HypeNET Path-based outper-
forms both path-based baselines by a significant
improvement in recall and with slightly lower pre-
cision. The recall boost is due to better path gen-
eralization, as demonstrated in Section 7.1.

Regarding distributional methods, the unsuper-
vised SLQS baseline performed slightly worse on
our dataset. The low precision stems from its
inability to distinguish between hypernyms and
meronyms, which are common in our dataset,
causing many false positive pairs such as (zabrze,
poland) and (kibbutz, israel). We sampled 50
false positive pairs of each dataset split, and found
that 38% of the false positive pairs in the random
split and 48% of those in the lexical split were
holonym-meronym pairs.

In accordance with previously reported results,
the supervised embedding-based method is the
best performing baseline on our dataset as well.
HypeNET Path-based performs slightly better,
achieving state-of-the-art results. Adding distri-
butional features to our method shows that these
two approaches are indeed complementary. On
both dataset splits, the performance differences
between HypeNET Integrated and HypeNET Path-
based, as well as the supervised distributional
method, are substantial, and statistically signifi-
cant with p-value of 1% (paired t-test).

We also reassess that indeed supervised distri-
butional methods perform worse on a lexical split
(Levy et al., 2015). We further observe a similar
reduction when using HypeNET, which is not a re-

sult of lexical memorization, but rather stems from
over-generalization (Section 7.1).

7 Analysis

7.1 Qualitative Analysis of Learned Paths

We analyze HypeNET’s ability to generalize over
path structures, by comparing prominent indica-
tive paths which were learned by each of the path-
based methods. We do so by finding high-scoring
paths that contributed to the classification of true-
positive pairs in the dataset. In the path-based
baselines, these are the highest-weighted features
as learned by the logistic regression classifier. In
the LSTM-based method, it is less straightforward
to identify the most indicative paths. We assess the
contribution of a certain path p to classification by
regarding it as the only path that appeared for the
term-pair, and compute its TRUE label score from
the class distribution: softmax(W · ~vxy)[1], set-
ting ~vxy = [~0, ~op,~0].

A notable pattern is that Snow’s method learns
specific paths, like X is Y from (e.g. Megadeth
is an American thrash metal band from Los An-
geles). While Snow’s method can only rely on
verbatim paths, limiting its recall, the generalized
version of Snow often makes coarse generaliza-
tions, such as X VERB Y from. Clearly, such a
path is too general, and almost any verb assigned
to it results in a non-indicative path (e.g. X take
Y from). Efforts by the learning method to avoid
such generalization, again, lower the recall. Hy-
peNET provides a better midpoint, making fine-
grained generalizations by learning additional se-
mantically similar paths such as X become Y from
and X remain Y from. See table 5 for additional
example paths which illustrate these behaviors.

We also noticed that while on the random split
our model learns a range of specific paths such as
X is Y published (learned for e.g. Y=magazine)
and X is Y produced (Y=film), in the lexical split
it only learns the general X is Y path for these re-

2395

method path example text

Snow

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<
direct/VERB/acl/>

Eyeball is a 1975 Italian-Spanish
film directed by Umberto Lenzi

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<
publish/VERB/acl/>

Allure is a U.S. women’s beauty
magazine published monthly

Snow +
Gen

X/NOUN/compound/> NOUN∗ be/VERB/ROOT/-
Y/NOUN/attr/< base/VERB/acl/>

Calico Light Weapons Inc. (CLWS) is an
American privately held manufacturing
company based in Cornelius, Oregon

X/NOUN/compound/> NOUN Y/NOUN/compound/< Weston Town Council

HypeNET
Integrated

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<
(release|direct|produce|write)/VERB/acl/>

Blinky is a 1923 American comedy
film directed by Edward Sedgwick

X/NOUN/compound/>
(association|co.|company|corporation|
foundation|group|inc.|international

|limited|ltd.)/NOUN/nsubj/>
be/VERB/ROOT/- Y/NOUN/attr/<
((create|found|headquarter

|own|specialize)/VERB/acl/>)?

Retalix Ltd. is a software company

Table 5: Examples of indicative paths learned by each method, with corresponding true positive term-pairs from the random
split test set. Hypernyms are marked red and hyponyms are marked blue.

Relation %
synonymy 21.37%
hyponymy 29.45%

holonymy / meronymy 9.36%
hypernymy-like relations 21.03%

other relations 18.77%

Table 6: Distribution of relations holding between each pair
of terms in the resources among false positive pairs.

lations. We note that X is Y is a rather “noisy”
path, which may occur in ad-hoc contexts with-
out indicating generic hypernymy relations (e.g.
chocolate is a big problem in the context of chil-
dren’s health). While such a model may identify
hypernymy relations between unseen terms, based
on general paths, it is prone to over-generalization,
hurting its performance, as seen in Table 4. As
discussed in § 4.2, we suspect that this scenario, in
which both terms are unseen, is usually not com-
mon enough to justify this limiting training setup.

7.2 Error Analysis

False Positives We categorized the false positive
pairs on the random split according to the rela-
tion holding between each pair of terms in the re-
sources used to construct the dataset. We grouped
several semantic relations from different resources
to broad categories, e.g. synonym includes also
alias and Wikipedia redirection. Table 6 displays
the distribution of semantic relations among false
positive pairs.

More than 20% of the errors stem from confus-
ing synonymy with hypernymy, which are known
to be difficult to distinguish.

An additional 30% of the term-pairs are re-

versed hypernym-hyponym pairs (y is a hyponym
of x). Examining a sample of these pairs suggests
that they are usually near-synonyms, i.e., it is not
that clear whether one term is truely more general
than the other or not. For instance, fiction is an-
notated in WordNet as a hypernym of story, while
our method classified fiction as its hyponym.

A possible future research direction might be
to quite simply extend our network to classify
term-pairs simultaneously to multiple semantic re-
lations, as in Pavlick et al. (2015). Such a multi-
class model can hopefully better distinguish be-
tween these similar semantic relations.

Another notable category is hypernymy-like re-
lations: these are other relations in the resources
that could also be considered as hypernymy, but
were annotated as negative due to our restrictive
selection of only indisputable hypernymy relations
from the resources (see Section 4.1). These in-
clude instances like (Goethe, occupation, novelist)
and (Homo, subdivisionRanks, species).

Lastly, other errors made by the model often
correspond to term-pairs that co-occur very few
times in the corpus, e.g. xebec, a studio produc-
ing Anime, was falsely classified as a hyponym of
anime.

False Negatives We sampled 50 term-pairs that
were falsely annotated as negative, and analyzed
the major (overlapping) types of errors (Table 7).

Most of these pairs had only few co-occurrences
in the corpus. This is often either due to infre-
quent terms (e.g. cbc.ca), or a rare sense of x in
which the hypernymy relation holds (e.g. (night,

2396

Error Type %
1 low statistics 80%
2 infrequent term 36%
3 rare hyponym sense 16%
4 annotation error 8%

Table 7: (Overlapping) categories of false negative pairs:
(1) x and y co-occurred less than 25 times (average co-
occurrences for true positive pairs is 99.7). (2) Either x or
y is infrequent. (3) The hypernymy relation holds for a rare
sense of x. (4) (x, y) was incorrectly annotated as positive.

play) holding for “Night”, a dramatic sketch by
Harold Pinter). Such a term-pair may have too
few hypernymy-indicating paths, leading to clas-
sifying it as negative.

8 Conclusion

We presented HypeNET: a neural-networks-based
method for hypernymy detection. First, we fo-
cused on improving path representation using
LSTM, resulting in a path-based model that per-
forms significantly better than prior path-based
methods, and matches the performance of the pre-
viously superior distributional methods. In partic-
ular, we demonstrated that the increase in recall is
a result of generalizing semantically-similar paths,
in contrast to prior methods, which either make no
generalizations or over-generalize paths.

We then extended our network by integrating
distributional signals, yielding an improvement of
additional 14F1 points, and demonstrating that the
path-based and the distributional approaches are
indeed complementary.

Finally, our architecture seems straightfor-
wardly applicable for multi-class classification,
which, in future work, could be used to classify
term-pairs to multiple semantic relations.

Acknowledgments

We would like to thank Omer Levy for his in-
volvement and assistance in the early stage of this
project and Enrico Santus for helping us by com-
puting the results of SLQS (Santus et al., 2014) on
our dataset.

This work was partially supported by an In-
tel ICRI-CI grant, the Israel Science Foundation
grant 880/12, and the German Research Founda-
tion through the German-Israeli Project Coopera-
tion (DIP, grant DA 1600/1-1).

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
Springer.

Marco Baroni and Alessandro Lenci. 2011. How we
blessed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEomet-
rical Models of Natural Language Semantics, pages
1–10.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,
and Chung-chieh Shan. 2012. Entailment above
the word level in distributional semantics. In EACL,
pages 23–32.

Claudia Borg, Mike Rosner, and Gordon Pace. 2009.
Evolutionary algorithms for definition extraction. In
Proceedings of the 1st Workshop on Definition Ex-
traction, pages 26–32.

Andrew Carlson, Justin Betteridge, Bryan Kisiel,
Burr Settles, Estevam R Hruschka Jr, and Tom M
Mitchell. 2010. Toward an architecture for never-
ending language learning. In AAAI.

Christiane Fellbaum. 1998. WordNet. Wiley Online
Library.

Katrin Fundel, Robert Küffner, and Ralf Zimmer.
2007. Relexrelation extraction using dependency
parse trees. Bioinformatics, pages 365–371.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In ACL, pages 539–
545.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2009. Semeval-2010 task 8:
Multi-way classification of semantic relations be-
tween pairs of nominals. In SemEval, pages 94–99.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, pages
1735–1780.

Nobuhiro Kaji and Masaru Kitsuregawa. 2008. Using
hidden markov random fields to combine distribu-
tional and pattern-based word clustering. In COL-
ING, pages 401–408.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. NLE, pages
359–389.

Zornitsa Kozareva and Eduard Hovy. 2010. A
semi-supervised method to learn and construct tax-
onomies using the web. In EMNLP, pages 1110–
1118.

2397

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional methods
really learn lexical inference relations. NAACL.

Dekang Lin. 1998. An information-theoretic defini-
tion of similarity. In ICML, pages 296–304.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou,
and Houfeng Wang. 2015. A dependency-based
neural network for relation classification. arXiv
preprint arXiv:1507.04646.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In NIPS, pages 3111–3119.

Shachar Mirkin, Ido Dagan, and Maayan Geffet. 2006.
Integrating pattern-based and distributional similar-
ity methods for lexical entailment acquisition. In
COLING and ACL, pages 579–586.

Ndapandula Nakashole, Gerhard Weikum, and Fabian
Suchanek. 2012. Patty: a taxonomy of rela-
tional patterns with semantic types. In EMNLP and
CoNLL, pages 1135–1145.

Roberto Navigli and Paola Velardi. 2010. Learning
word-class lattices for definition and hypernym ex-
traction. In ACL, pages 1318–1327.

Thien Huu Nguyen and Ralph Grishman. 2015.
Combining neural networks and log-linear mod-
els to improve relation extraction. arXiv preprint
arXiv:1511.05926.

Ellie Pavlick, Johan Bos, Malvina Nissim, Charley
Beller, Benjamin Van Durme, and Chris Callison-
Burch. 2015. Adding semantics to data-driven para-
phrasing. In ACL.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In
NAACL.

Laura Rimell. 2014. Distributional lexical entailment
by topic coherence. In EACL, pages 511–519.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In COLING, pages 1025–1036.

Enrico Santus, Alessandro Lenci, Qin Lu, and
Sabine Schulte Im Walde. 2014. Chasing hyper-
nyms in vector spaces with entropy. In EACL, pages
38–42.

Vered Shwartz, Omer Levy, Ido Dagan, and Jacob
Goldberger. 2015. Learning to exploit structured
resources for lexical inference. In CoNLL, page 175.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. In NIPS.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2006.
Semantic taxonomy induction from heterogenous
evidence. In ACL, pages 801–808.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In WWW, pages 697–706.

Peter D Turney. 2006. Similarity of semantic relations.
CL, pages 379–416.

Denny Vrandečić. 2012. Wikidata: A new platform
for collaborative data collection. In WWW, pages
1063–1064.

Julie Weeds and David Weir. 2003. A general frame-
work for distributional similarity. In EMLP, pages
81–88.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish
hypernyms and co-hyponyms. In COLING, pages
2249–2259.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In EMNLP.

Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen,
Yangyang Lu, and Zhi Jin. 2016. Improved re-
lation classification by deep recurrent neural net-
works with data augmentation. arXiv preprint
arXiv:1601.03651.

Appendix A Best Hyper-parameters

Table 8 displays the chosen hyper-parameters of
each method, yielding the highest F1 score on the
validation set.

method values

ra
nd

om
sp

lit

Snow regularization: L2
Snow + Gen regularization: L1

LSTM
embeddings: GloVe-100-Wiki

learning rate: α = 0.001
dropout: d = 0.5

SLQS N=100, threshold = 0.000464
Best

Supervised
method: concatenation, classifier: SVM

embeddings: GloVe-300-Wiki

LSTM-
Integrated

embeddings: GloVe-50-Wiki
learning rate: α = 0.001
word dropout: d = 0.3

le
xi

ca
ls

pl
it

Snow regularization: L2
Snow + Gen regularization: L2

LSTM
embeddings: GloVe-50-Wiki

learning rate: α = 0.001
dropout: d = 0.5

SLQS N=100, threshold = 0.007629
Best

Supervised
method: concatenation, classifier: SVM

embeddings: GloVe-100-Wikipedia

LSTM-
Integrated

embeddings: GloVe-50-Wiki
learning rate: α = 0.001
word dropout: d = 0.3

Table 8: The best hyper-parameters in every model.

2398

