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Abstract

Distributional measures of lexical similar-
ity and kernel methods for classification
are well-known tools in Natural Language
Processing. We bring these two meth-
ods together by introducing distributional
kernels that compare co-occurrence prob-
ability distributions. We demonstrate the
effectiveness of these kernels by present-
ing state-of-the-art results on datasets for
three semantic classification: compound
noun interpretation, identification of se-
mantic relations between nominals and se-
mantic classification of verbs. Finally, we
consider explanations for the impressive
performance of distributional kernels and
sketch some promising generalisations.

1 Introduction

This paper draws a connection between two well-
known topics in statistical Natural Language Pro-
cessing: distributional measures of lexical simi-
larity and kernel methods for classification. Dis-
tributional similarity measures quantify the sim-
ilarity between pairs of words through their ob-
served co-occurrences with other words in corpus
data. The kernel functions used in support vec-
tor machine classifiers also allow an interpretation
as similarity measures; however, not all similar-
ity measures can be used as kernels. In particu-
lar, kernel functions must satisfy the mathemati-
cal property of positive semi-definiteness. In Sec-
tion 2 we consider kernel functions suitable for
comparing co-occurrence probability distributions
and show that these kernels are closely related to
measures known from the distributional similarity
literature. We apply these distributional kernels
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to three semantic classification tasks: compound
noun interpretation, identification of semantic re-
lations between nominals and semantic classifica-
tion of verbs. In all cases, the distributional ker-
nels outperform the linear and Gaussian kernels
standardly used for SVM classification and fur-
thermore achieve state-of-the-art results. In Sec-
tion 4 we provide a concrete explanation for the
superior performance of distributional kernels, and
in Section 5 we outline some promising directions
for future research.

2 Theory

2.1 Distributional Similarity Measures

Distributional approaches to lexical similarity as-
sume that words appearing in similar contexts are
likely to have similar or related meanings. To
measure distributional similarity, we use a repre-
sentation of words based on observation of their
relations with other words. Specifically, a target
word w is represented in terms of a set C of ad-
missible co-occurrence types c = (r, w′), where
the word w′ belongs to a co-occurrence vocab-
ulary Vc and r is a relation that holds between
w and w′. Co-occurrence relations may be syn-
tactic (e.g., verb-argument, conjunct-conjunct) or
may simply be one of proximity in text. Counts
f(w, c) of a target word w’s co-occurrences can
be estimated from language corpora, and these
counts can be weighted in a variety of ways to re-
flect prior knowledge or to reduce statistical noise.
A simple weighting method is to represent each
word w as a vector of co-occurrence probabilities
(P (c1|w), . . . , P (c|C||w)). This vector defines the
parameters of a categorical or multinomial proba-
bility distribution, giving a useful probabilistic in-
terpretation of the distributional model. As the
vector for each target word must sum to 1, the
marginal distributions of target words have little
effect on the resulting similarity estimates. Many
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similarity measures and weighting functions have
been proposed for distributional vectors; compara-
tive studies include Lee (1999), Curran (2003) and
Weeds and Weir (2005).

2.2 Kernel Methods for Computing
Similarity and Distance

In this section we describe two classes of func-
tions, positive semi-definite and negative semi-
definite kernels, and state some relationships be-
tween these classes. The mathematical treatment
follows Berg et al. (1984). A good general intro-
duction to kernels and support vector machines is
the book by Cristianini and Shawe-Taylor (2000).

Let X be a set of items and let k : X × X →
R be a symmetric real-valued function on pairs of
items in X . Then k is a positive semi-definite (psd)
kernel if for all finite n-element sets X ⊆ X , the
n× n Gram matrix K defined by Kij = k(xi, xj)
satisfies the property

v′Kv ≥ 0, ∀v ∈ Rn (1)

This is equivalent to requiring that k define an in-
ner product in a Hilbert space F which may be the
same as X or may differ in dimensionality or in
type (F is by definition a vector space, but X need
not be). An intuitive interpretation of psd kernels is
that they provide a similarity measure on members
ofX based on an embedding φ from input spaceX
into feature space F . It can be shown that a func-
tion is psd if and only if all Gram matrices K have
no negative eigenvalues.

Kernel functions have received significant atten-
tion in recent years through their applications in
machine learning, most notably support vector ma-
chines (SVMs, Cortes and Vapnik (1995)). SVM
classifiers learn a decision boundary between two
data classes that maximises the minimum distance
or margin from the training points in each class to
the boundary. The notion of distance used and the
feature space in which the boundary is set are de-
termined by the choice of kernel function. So long
as the kernel satisfies (1), the SVM optimisation
algorithm is guaranteed to converge to a global op-
timum that affords the geometric interpretation of
margin maximisation. Besides these desirable op-
timisation properties, kernel methods have the ad-
vantage that the choice of kernel can be based on
prior knowledge about the problem and on the na-
ture of the data.

A negative semi-definite (nsd) kernel is a sym-
metric function k̃ : X × X → R such that for all

finite n-element sets X ⊆ X and for all vectors
v = (v1, . . . , vn) ∈ Rn with

∑
i vi = 0

v′K̃v ≤ 0 (2)

Whereas positive semi-definite kernels correspond
to inner products in a Hilbert space F , negative
semi-definite kernels correspond to squared dis-
tances. In particular, if k̃(x, y) = 0 only when
x = y then

√
k̃ is a metric. If a function k is

psd, then −k is always nsd, but the converse does
not hold.1 However, Berg et al. (1984) describe
two simple methods for inducing a positive semi-
definite function k from negative semi-definite k̃:

k(x, y) = k̃(x, x0) + k̃(y, x0)− k̃(x, y)

− k̃(x0, x0), ∀x0 ∈ X (3a)

k(x, y) = exp(−αk̃(x, y)), ∀α > 0 (3b)

The point x0 in (3a) can be viewed as providing
an origin in F that is the image of some point in
the input space X ; the choice of x0 does not have
an effect on SVM classification. A familiar exam-
ple of these transformations arises if we take k̃ to
be the squared Euclidean L2 distance ‖x − y‖2 =∑

i(xi − yi)2. Applying (3a) and setting x0 to
be the zero vector, we obtain a quantity that is
twice the linear kernel k(x, y) =

∑
i xiyi. Apply-

ing (3b) we derive the Gaussian kernel k(x, y) =
exp(−α‖x−y‖2). In the next section we consider
kernels obtained by plugging alternative squared
metrics into equations (3a) and (3b).

2.3 Distributional Kernels

Given the effectiveness of distributional similarity
measures for numerous tasks in NLP and the in-
terpretation of kernels as similarity functions, it
seems natural to consider the use of kernels tai-
lored for co-occurrence distributions when per-
forming semantic classification. As shown in Sec-
tion 2.2 the standardly used linear and Gaussian
kernels derive from the L2 distance, yet Lee (1999)
has shown that this distance measure is relatively
poor at comparing co-occurrence distributions. In-
formation theory provides a number of alterna-
tive distance functions on probability measures, of
which the L1 distance (also called variational dis-
tance), Kullback-Leibler divergence and Jensen-
Shannon divergence are well-known in NLP and

1Negated nsd functions are sometimes called condition-
ally psd; they constitute a superset of the psd functions.
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Distance Definition Derived linear kernel

(L2 distance)2
∑

c(P (c|w1)− P (c|w2))2
∑

c P (c|w1)P (c|w2)

L1 distance
∑

c |P (c|w1)− P (c|w2)|
∑

c min(P (c|w1), P (c|w2))

Jensen-Shannon
∑

c P (c|w1) log2(
2P (c|w1)

P (c|w1)+P (c|w2)) + −∑
c P (c|w1) log2(

P (c|w1)
P (c|w1)+P (c|w2)) +

divergence P (c|w2) log2(
2P (c|w2)

P (c|w1)+P (c|w2)) P (c|w2) log2(
P (c|w2)

P (c|w1)+P (c|w2))

Hellinger distance
∑

c(
√

P (c|w1)−
√

P (c|w2))2
∑

c

√
P (c|w1)P (c|w2)

Table 1: Squared metric distances on co-occurrence distributions and corresponding linear kernels

were shown by Lee to give better similarity esti-
mates than the L2 distance.

In Section 2.2 we have seen how to derive psd
kernels (similarities) from nsd kernels (distances).
It seems likely that distance measures that are
known to work well for comparing co-occurrence
distributions will also give us suitable psd similar-
ity measures. Negative semi-definite kernels are
by definition symmetric, which rules the Kullback-
Leibler divergence and Lee’s (1999) α-skew diver-
gence out of consideration. The nsd condition (2)
is met if the distance function is a squared metric in
a Hilbert space. In this paper we use a parametric
family of squared Hilbertian metrics on probability
distributions that has been discussed by Hein and
Bousquet (2005). This family contains many fa-
miliar distances including the L1 distance, Jensen-
Shannon divergence (JSD) and the Hellinger dis-
tance used in statistics, though not the squared L2

distance. Positive semi-definite distributional ker-
nels can be derived from these distances through
equations (3a) and (3b). We interpret the distribu-
tional kernels produced by (3a) and (3b) as ana-
logues of the linear and Gaussian kernels respec-
tively, given by a different norm or concept of dis-
tance in the feature space F . Hence the linear dis-
tributional kernels produced by (3a) correspond to
inner products in the input space X , and the rbf
distributional kernels produced by (3b) are radial
basis functions corresponding to inner products
in a high-dimensional Hilbert space of Gaussian-
like functions. In this paper we use the unmodi-
fied term “linear kernel” in the standard sense of
the linear kernel derived from the L2 distance and
make explicit the related distance when referring to
other linear kernels, e.g., the “JSD linear kernel”.
Likewise, we use the standard term “Gaussian” to

refer to the L2 rbf kernel, and denote other rbf ker-
nels as, for example, the “JSD rbf kernel”.

Table 1 lists relevant squared metric distances
and their derived linear kernels. The linear ker-
nel derived from the L1 distance is the same as the
difference-weighted token-based similarity mea-
sure of Weeds and Weir (2005). The JSD linear
kernel can be rewritten as (2 - JSD), where JSD
is the value of the Jensen-Shannon divergence.
This formulation is used as a similarity measure
by Lin (1999). Dagan et al. (1999) use a similar-
ity measure 10−αJSD, though they acknowledge
that this transformation is heuristically motivated.
The rbf kernel exp(−αJSD) provides a theoret-
ically sound alternative when the psd property is
required. It follows from the above discussion
that these previously known distributional similar-
ity measures are valid kernel functions and can be
used directly for SVM classification.

Finally, we consider the status of other popular
distributional measures. The familiar cosine sim-
ilarity measure is provably a valid psd kernel, as
it is the L2 linear kernel calculated between L2-
normalised vectors. Distributional vectors are by
definition L1-normalised (they sum to 1), but there
is evidence that L2 normalisation is optimal when
using L2 kernels for tasks such as text categori-
sation (Leopold and Kindermann, 2002). Indeed,
in the experiments described below L2-normalised
feature vectors are used with the L2 kernels, and
the L2 linear kernel function then becomes identi-
cal to the cosine similarity. Other similarity mea-
sures, such as that of Lin (1998), can be shown to
be non-psd by calculating similarity matrices from
real or artificial data and showing that their non-
zero eigenvalues are not all positive, as is required
by psd functions.
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3 Practice

3.1 General Methodology

All experiments were performed using the LIB-
SVM Support Vector Machine library (Chang and
Lin, 2001), modified to implement one-against-
all classification. The members of the distribu-
tional kernel family all performed similarly but the
Jensen-Shannon divergence kernels gave the most
consistently impressive results, and we restrict dis-
cussion to these kernels due to considerations of
space and clarity. In each experiment we com-
pare the standard linear and Gaussian kernels with
the linear and JSD rbf kernels. As a preprocess-
ing step for the L2 kernels, each feature vector
was normalised to have unit L2 norm. For the
Jensen-Shannon kernels, the feature vectors were
normalised to have unit L1 norm, i.e., to define
a probability distribution. For all datasets and all
training-test splits the SVM cost parameter C was
optimised in the range (2−6, 2−4, . . . , 212) through
cross-validation on the training set. In addition, the
width parameter α was optimised in the same way
for the rbf kernels. The number of optimisation
folds differed according to the size of the dataset
and the number of training-test splits to be eval-
uated: we used 10 folds for the compound task,
leave-one-out cross-validation for SemEval Task 4
and 25 folds for the verb classification task.

3.2 Compound Noun Interpretation

The task of interpreting the semantics of noun
compounds is one which has recently received
considerable attention (Lauer, 1995; Girju et al.,
2005; Turney, 2006). For a given noun-noun com-
pound, the problem is to identify the semantic re-
lation between the compound’s constituents – that
a kitchen knife is a knife used in a kitchen but a
steel knife is a knife made of steel.2 The difficulty
of the task is due to the fact that the knowledge re-
quired to interpret compounds is not made explicit
in the contexts where they appear, and hence stan-
dard context-based methods for classifying seman-
tic relations in text cannot be applied. Most previ-
ous work making use of lexical similarity has been
based on WordNet measures (Kim and Baldwin,
2005; Girju et al., 2005). Ó Séaghdha and Copes-
take (2007) were to our knowledge the first to ap-
ply a distributional model. Here we build on their

2In the classification scheme considered here, kitchen
knife would have the label IN and steel knife would be la-
belled BE.

methodology by introducing a probabilistic feature
weighting scheme and applying the new distribu-
tional kernels.

For our experiments we used the dataset of
Ó Séaghdha and Copestake (2007), which con-
sists of 1443 noun compounds annotated with
six semantic relations: BE, HAVE, IN, AGENT,
INSTRUMENT and ABOUT.3 The classification
baseline associated with always choosing the
most frequent relation (IN) is 21.3%. For
each compound (N1, N2) in the dataset, we
associate the co-occurrence probability vector
(P (c1|N1), . . . , P (c|C||N1)) with N1 and the vec-
tor (P (c1|N2), . . . , P (c|C||N2)) with N2. The
probability vector for the compound is created
by appending the two constituent vectors, each
scaled by 0.5 to weight both constituents equally
and ensure that the new vector sums to 1.
These probability vectors are used to compute
the Jensen-Shannon kernel values. The pre-
processing step for the L2 kernels is analogous,
except that the co-occurrence frequency vector
(f(c1, Ni), . . . , f(c|C|, Ni)) for each constituent
Ni is normalised to have unit L2 norm (instead
of unit L1 norm); the combined feature vector for
each data item is also L2-normalised.4

The co-occurrence relation we counted to esti-
mate the probability vectors was the conjunction
relation. This relation gives sparse but high-quality
information, and was shown to be effective by Ó
Séaghdha and Copestake. We extracted two fea-
ture sets from two very different corpora. The
first is the 90 million word written component of
the British National Corpus (Burnard, 1995). This
corpus was parsed with the RASP parser (Briscoe
et al., 2006) and all instances of the conj gram-
matical relation were counted. The co-occurrence
vocabulary Vc was set to the 10,000 words most
frequently entering into a conj relation across
the corpus. The second corpus we used was the
Web 1T 5-Gram Corpus (Brants and Franz, 2006),
which contains frequency counts for n-grams up
to length 5 extracted from Google’s index of ap-
proximately 1 trillion words of Web text. As the
nature of this corpus precludes parsing, we used a
simple pattern-based technique to extract conjunc-
tions. An n-gram was judged to contain a conjunc-
tion co-occurrence between Ni and Nj if it con-

3This dataset is available from http://www.cl.cam.
ac.uk/∼do242/resources.html.

4The importance of performing both normalisation steps
was suggested to us by an anonymous reviewer’s comments.
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BNC 5-Gram
Kernel Acc F Acc F
Linear 57.9 55.8 55.0 52.5
Gaussian 58.0 56.2 53.5 50.8
JSD (linear) 59.9 57.8 60.2 58.1
JSD (rbf) 59.8 57.9 61.0 58.8

Table 2: Results for compound interpretation

tained the pattern Ni and (¬N)* Nj (¬N)*. A noun
dictionary automatically constructed from Word-
Net and an electronic version of Webster’s 1913
Unabridged Dictionary determined the sets of ad-
missible nouns {N} and non-nouns {¬N}.5 The
vocabulary Vc was again set to the 10,000 most
frequent conjuncts, and the probability estimates
P (c|w) were based on the n-gram frequencies for
each n-gram matching the extraction pattern. A
third feature set extracted from the 5-Gram Corpus
by using a larger set of joining terms was also stud-
ied but the results were not significantly different
from the sparser conjunction feature sets and are
not presented here.

Performance was measured by splitting the data
into five folds and performing cross-validation.
Results for the two feature sets and four kernels
are presented in Table 2. The kernels derived from
the Jensen-Shannon divergence clearly outperform
the L2 distance-based linear and Gaussian kernels
in both accuracy and macro-averaged F-score. The
best performing kernel-feature combination is the
Jensen-Shannon rbf kernel with the 5-Gram fea-
tures, which attains 61.0% accuracy and 58.8%
F-score. This surpasses the best previous result
of 57.1% accuracy, 55.3% F-score that was re-
ported by Ó Séaghdha and Copestake (2007) for
this dataset. That result was obtained by combin-
ing a distributional model with a relational simi-
larity model based on string kernels; incorporating
relational similarity into the system described here
improves performance even further (Ó Séaghdha,
2008).

3.3 SemEval Task 4

Task 4 at the 2007 SemEval competition (Girju et
al., 2007) focused on the identification of seman-
tic relations among nominals in text. Identifica-
tion of each of seven relations was designed as
a binary classification task with 140 training sen-

5The electronic version of Webster’s is available from
http://msowww.anu.edu.au/∼ralph/OPTED/.

BNC 5-Gram
Kernel Acc F Acc F
Linear 67.6 57.1 65.4 63.3
Gaussian 66.8 60.7 65.6 62.9
JSD (linear) 71.4 68.8 69.6 65.8
JSD (rbf) 69.9 66.7 70.7 67.5

Table 3: Results for SemEval Task 4

tences and around 70 test sentences.6 To ensure
that the task be a challenging one, the negative
test examples were all “near misses” in that they
were plausible candidates for the relation to hold
but failed to meet one of the criteria for that rela-
tion. This was achieved by selecting both positive
and negative examples from the results of the same
targeted Google queries. The majority-class base-
line for this task gives Accuracy = 57.0%, F-score
= 30.8%, while the all-true baseline (label every
test sentence positive) gives Accuracy = 48.5%, F-
score = 64.8%.

We used the same feature sets and kernels as in
Section 3.2. The results are presented in Table 3.
Again, the JSD kernels outperform the standard
L2 kernels by a considerable margin. The best
performing feature-kernel combination achieves
71.4% Accuracy and 68.8% F-score, higher than
the best performance attained in the SemEval com-
petition without using WordNet similarity mea-
sures (Accuracy = 67.0%, F-score = 65.1%; Nakov
and Hearst (2007)). This is also higher than the
performance of all but three of the 14 SemEval en-
tries which did use WordNet. Davidov and Rap-
poport (2008) have recently described a WordNet-
free method that attains slightly lower accuracy
(70.1%) and slightly higher F-score (70.6%) than
our method. Taken together, Davidov and Rap-
poport’s results and ours define the current state
of the art on this task.

3.4 Verb Classification
To investigate the effectiveness of distributional
kernels on a different kind of semantic classifi-
cation task, we tested our methods on the verb
class data of Sun et al. (2008). This dataset con-
sists of 204 verbs assigned to 17 of Levin’s (1993)
verb classes. Each verb is represented by a set
of features corresponding to the distribution of its
instances across subcategorisation frames (SCFs).

6The relations are Cause-Effect, Instrument-Agency,
Product-Producer, Origin-Entity, Theme-Tool, Part-Whole
and Content-Container.
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FS3 FS5
Kernel Acc F Acc F
Linear 67.1 65.5 67.6 65.9
Gaussian 60.8 58.6 62.7 60.2
JSD (linear) 70.6 67.3 69.6 66.4
JSD (rbf) 68.6 65.1 70.1 67.2
Sun et al. (SVM) 57.8 58.2 57.3 57.4
Sun et al. (GS) 59.3 57.1 64.2 62.5

Table 4: Results for leave-one-out verb classifica-
tion and comparison with Sun et al.’s (2008) SVM
and Gaussian fitting methods

These frames include information about syntac-
tic constituents (NP, NP NP, NP SCOMP, . . . )
and some lexical information about subcategorised
prepositions (NP with, out, . . . ). The feature val-
ues are counts of SCFs extracted from a large cor-
pus. As the feature vector for each verb natu-
rally defines a probability distribution over SCFs,
it seems intuitive to apply distributional kernels to
the problem of predicting Levin classes for verbs.

Sun et al. use multiple feature sets of varying
sparsity and noisiness. We report results on the
two feature sets for which they reported best per-
formance; for continuity we keep the names FS3
and FS5 for these feature sets. These were de-
rived from the least filtered and hence least sparse
subcategorisation lexicon (which they call VALEX
1) and differ in the granularity of prepositional
SCFs. The SCF representation in FS5 is richer
and hence potentially more discriminative, but it is
also sparser. Using an SVM with a Gaussian ker-
nel, Sun et al. achieved their best results on FS3.
Perhaps surprisingly, their best results overall were
attained with FS5 by a simple method based on
fitting multivariate Gaussian distributions to each
class in the training data and assigning the maxi-
mum likelihood class to test points.

Following Sun et al., we use a leave-one-out
measure of verb classification performance. As
the examples are distributed equally across the 17
classes, the random baseline accuracy is 5.9%. Ta-
ble 4 presents our results with L2 and JSD kernels,
as well as those of Sun et al. The best overall
performance is attained by the JSD linear kernel,
which scores higher than the L2-derived kernels
on both feature sets. The L2 linear kernel also per-
forms quite well and with consistency. The JSD
rbf kernel was less consistent over cross-validation
runs, seemingly due to uncertainty in selecting the

optimal α parameter value; it clearly outperforms
the L2 linear kernel on one feature set (FS5) but
on the other (FS3) it attains a slightly lower F-
score while maintaining a higher accuracy. The
Gaussian kernel seems particularly ill-suited to this
dataset, performing significantly worse than the
other kernels. The difference between Sun et al.’s
results with the Gaussian kernel and ours with the
same kernel may be due to the use of one-against-
all classification here instead of one-against-one,
or it may be due to differences in preprocessing or
parameter optimisation.

4 The effect of marginal distributions

It is natural to ask why distributional kernels per-
form better than the standard linear and Gaussian
kernels. One answer might be that just as infor-
mation theory provides the “correct” notion of in-
formation for many purposes, it also provides the
“correct” notion of distance between probability
distributions. Hein and Bousquet (2005) show that
their family of distributional kernels are invariant
to bijective transformations of the event space C
and suggest that this property is a valuable one for
image histogram classification where data may be
represented in a range of equivalent colour spaces.
However, it is not clear that this confers an advan-
tage when comparing lexical co-occurrence distri-
butions; when transformations are performed on
the space of co-occurrence types, they are gener-
ally not information-conserving, for example lem-
matisation or stemming.

A more practical explanation is that the distri-
butional kernels and distances are less sensitive
than the (squared) L2 distance and its derived ker-
nels to the marginal frequencies of co-occurrence
types. When a type c has high frequency we expect
that it will have higher variance, i.e., the differ-
ences |P (c|w1)− P (c|w2)| will tend to be greater
even if c is not a more important signifier of simi-
larity.7 These differences contribute quadratically
to the L2 distance and hence also to the associ-
ated rbf kernel, i.e., the Gaussian kernel. It is also
easy to see that types c for which P (c|wi) tends
to be large will dominate the value of the linear
kernel. This explanation is also plausibly a fac-
tor in the relatively poor performance of L2 dis-
tance as a lexical dissimilarity measure, as demon-

7Chapelle et al. (1999) give a similar explanation for the
performance of a related family of kernels on a histogram
classification task.
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strated by Lee (1999). In contrast, the differences
|P (c|w1)−P (c|w2)| are not squared in the L1 dis-
tance formula, and the minimum function in the L1

linear kernel dampens the effect of high-variance
co-occurrence types. The Jensen-Shannon formula
is more difficult to interpret, as the difference terms
do not directly appear. While co-occurrence types
with large P (c|w1) and P (c|w2) do contribute
more to the distance and kernel values, it is the
proportional size of the difference that appears in
the log term rather than its magnitude. Finally, the
Hellinger distance and kernels squash the variance
associated with c through the square root function.

5 Discussion and Future Directions

Kernels on probability measures have been dis-
cussed in the machine learning literature (Kondor
and Jebara, 2003; Cuturi et al., 2005; Hein and
Bousquet, 2005), but they have previously been
applied only to standard image and text classifi-
cation benchmark tasks. We seem to be the first to
use distributional kernels for semantic classifica-
tion and to note their connection with familiar lex-
ical similarity measures. Indeed, the only research
we are aware of on kernels tailored for lexical sim-
ilarity is the small body of work on WordNet ker-
nels, e.g., Basili et al. (2006). In contrast, Sup-
port Vector Machines have been widely adopted
for computational semantic tasks, from word sense
disambiguation (Gliozzo et al., 2005) to semantic
role labelling (Pradhan et al., 2004). The standard
feature sets for semantic role labelling and many
other tasks are collections of heterogeneous fea-
tures that do not correspond to probability distri-
butions. So long as the features are restricted to
positive values, distributional kernels can be ap-
plied; it will be interesting (and informative) to see
whether they retain their superiority in this setting.

One advantage of kernel methods is that kernels
can be defined for non-vectorial data structures
such as strings, trees, graphs and sets. A promis-
ing topic of future research is the design of distri-
butional kernels for comparing structured objects,
based on the feature space embedding associated
with convolution kernels (Haussler, 1999). These
kernels map structures in X into a space whose di-
mensions correspond to substructures of the ele-
ments of X . Thus strings are mapped onto vec-
tors of substring counts, and trees are mapped onto
vectors of subtree counts. We adopt the perspec-
tive that this mapping represents structures xi ∈ X

as measures over substructures x̄1, . . . , x̄d. Prop-
erly normalised, this gives a distributional proba-
bility vector (P (x̄1), . . . , P (x̄d)) similar to those
used for computing lexical similarity. This per-
spective motivates the use of distributional inner
products instead of the dot products implicitly used
in standard convolution kernels. Several authors
have suggested applying distributional similarity
measures to sentences and phrases for tasks such as
question answering (Lin and Pantel, 2001; Weeds
et al., 2005). Distributional kernels on strings and
trees should provide a flexible implementation of
these suggestions that is compatible with SVM
classification and does not require manual feature
engineering. Furthermore, there is a ready gener-
alisation to kernels on sets of structures; if a set
is represented as the normalised sum of its mem-
ber embeddings in feature space F , distributional
methods can be applied directly.

6 Conclusion

In this paper we have introduced distributional ker-
nels for classification with co-occurrence proba-
bility distributions. The suitability of distribu-
tional kernels for semantic classification is intu-
itive, given their relation to proven distributional
methods for computing semantic similarity, and in
practice they work very well. As these kernels
give state-of-the-art results on the three datasets we
have tested, we expect that they will prove useful
for a wide range of semantic classification prob-
lems in future.
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