
Proceedings of the 16th Conference of the European Chapter of the Associationfor Computational Linguistics: Student Research Workshop, pages 80–87
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

80

Discrete Reasoning Templates for Natural Language Understanding

Hadeel Al-Negheimish Pranava Madhyastha

Department of Computing
Imperial College London

{halnegheimish,pranava,a.russo}@imperial.ac.uk

Alessandra Russo

Abstract

Reasoning about information from multiple
parts of a passage to derive an answer is
an open challenge for reading-comprehension
models. In this paper, we present an approach
that reasons about complex questions by de-
composing them to simpler subquestions that
can take advantage of single-span extraction
reading-comprehension models, and derives
the final answer according to instructions in
a predefined reasoning template. We focus
on subtraction based arithmetic questions and
evaluate our approach on a subset of the DROP
dataset. We show that our approach is compet-
itive with the state of the art while being inter-
pretable and requires little supervision.

1 Introduction

Automated reading comprehension (RC) is an im-
portant natural language understanding task, where
a model is presented with a passage and is asked to
answer questions about that passage. While models
have excelled at single-span extraction questions,
they still struggle with reasoning over distinct parts
of a passage (Dua et al., 2019). Several multi-hop
reasoning benchmarks have been proposed (Yang
et al., 2018; Khashabi et al., 2018; Dua et al., 2019),
of which, in this paper, we focus on the DROP (Dis-
crete Reasoning Over the content of Paragraphs)
dataset. Inspired by the semantic parsing literature,
the dataset contains questions that involve possibly
multiple steps of discrete reasoning over the con-
tents of paragraphs, including numerical reasoning.

Recent work has proposed several novel ap-
proaches to tackle DROP (Ran et al., 2019; Hu
et al., 2019; Andor et al., 2019; Gupta et al., 2020;
Chen et al., 2020). However, most approaches
provide little evidence of their reasoning process,
especially with regards to why specific operands
are chosen for a reasoning task. With the exception
of (Gupta et al., 2020; Chen et al., 2020), they also
suffer from limited compositionality.

'As of the 2000 United States Census of 2000,
there were 47,829 people, 15,137 households,
and 10,898 families residing in the city. The
population density was 7,921.7 people per
square mile (3,057.4/km2). There were 16,180
housing units at an average density of 2,679.8
per square mile (1,034.3/km2). The racial
makeup of the city was 21.45% White (U.S.
Census), 61.78% African American (U.S.
Census), 0.41% Native American (U.S. Census),
0.93% Asian (U.S. Census), 0.10% Pacific
Islander (U.S. Census), 10.78% from Race
(United States Census), and 4.55% from two or
more races. Hispanic (U.S. Census) or Latino
(U.S. Census) of any race were 25.16% of the
population.'

P
as

sa
ge

How many more households are there than
families?

Q

4239A

How many
households are
there?

How many families
are there?

15,137 10,898

q

a

Op subtraction(,)

Figure 1: Subtraction Template: Original question is
decomposed to two simpler subquestions that find the
values associated with the two compared entities as
span-extraction, and the final answer is calculated by
finding the absolute difference of the two partial an-
swers.

In this paper, we present a first attempt at build-
ing an interface between discrete reasoning and
unstructured natural language. We propose decom-
posing a question to simpler subquestions that can
more easily be solved by single-span extraction RC
models. Such decomposition is defined by Reason-
ing Templates, which also determine how to assem-
ble the computed partial answers. We demonstrate
the feasibility of our approach with the subtraction
based questions (illustrated in Figure 1). We show
that our approach is competitive with the state of
the art models on a subset of DROP’s subtraction

81

questions while requiring much less training data
and providing visibility of the model’s decision-
making process.

2 Related Work

There has been a recent resurgence in research on
automated reading comprehension (RC) where an
automated system is capable of reading a docu-
ment in order to answer the questions pertaining
to the document. This has led to the creation of
several RC datasets to facilitate the research (Ra-
jpurkar et al., 2016, 2018; Yang et al., 2018; Reddy
et al., 2019; Dua et al., 2019; Huang et al., 2019).
Among these, SQuAD (Rajpurkar et al., 2016) is
a popular single-hop question answering dataset
where a question can be answered by relying on a
single sentence from the document. SoTA models
have achieved near-human performance on such
single-hop question answering tasks.1 However,
answering a question by only identifying the most
relevant span leaves models prone to exploiting
advanced pattern matching algorithms.

On the other hand, multi-hop questions make
reading-comprehension more challenging, as they
require integrating information from multiple parts
in a passage (Yang et al., 2018; Khashabi et al.,
2018; Dua et al., 2019). DROP (Dua et al., 2019)
is one such dataset that contains questions covering
many types of reasoning, such as counting, sort-
ing, or arithmetic. The dataset was constructed
by adversarially crowdsourcing questions on a set
of Wikipedia passages known to have many num-
bers. Special model architectures have been built
to tackle DROP, and these fall into two general di-
rections: the first direction augments reading com-
prehension models that were successful on single-
span extraction questions with specialized modules
that tackle more complex questions. These include
NAQANet (Dua et al., 2019), NumNet (Ran et al.,
2019) , and MTMSN (Hu et al., 2019). The second
direction works on predicting programs that would
solve the question, CalBERT (Andor et al., 2019)
defines a set of derivations and scoring functions
for each of them, while more recent work NMN
(Gupta et al., 2020) and NeRd (Chen et al., 2020)
utilize LSTMs to decode variable-length programs
from question and passage embeddings.

By definition, models with specialized modules
have limited compositional reasoning abilities. The
two directions vary in their interpretability; the first

1https://rajpurkar.github.io/SQuAD-explorer/

shows which module has been used, and the second
shows the resulting programs which have been gen-
erated to compute the answer. However, none of
these directions indicate why operands in the pas-
sage were selected. For all approaches, the dataset
is augmented with all possible derivations that lead
to the gold answer, by performing an exhaustive
search. Moreover, all approaches assume a pre-
processing step that extracts all numbers in the
passage and their indices, which massively reduces
the search space for arithmetic questions.

In this work, we build upon DecompRC (Min
et al., 2019) for question decomposition, where a
model is trained to extract key parts of content from
the question which are then used for decomposition.
Arithmetic questions, which we focus on in this
work, are a known limitation of DecompRC. An
alternative approach to decomposition is QDMR
(Wolfson et al., 2020), a recently proposed for-
malism for decomposing questions into a series of
simpler steps based on predefined query operators.
QDMR breaks down a question to its atomic parts
directly, whereas we propose recursively decom-
posing questions to simpler ones. While (Wolfson
et al., 2020) provides a dataset of annotated ques-
tions, QDMR parsing remains an open challenge.
In the following section we present our approach
that focuses on answering arithmetic questions.

3 Approach

We propose a pipelined approach that focuses on
breaking down complex questions that require rea-
soning over multiple parts in the passage to simpler
single-hop questions. The latter can be resolved
by taking advantage of state of the art single-hop
reading comprehension models. The main build-
ing block of our approach is a reasoning template.
Each reasoning type is associated with a single
template, which contains instructions on how to
decompose a question and how to combine partial
answers to arrive at the final answer.

Figure 2 illustrates our pipeline. First, the ques-
tion and passage are fed to our system, which se-
lects a template depending on the reasoning type
required (classification task). The template decom-
poses the question to simpler subquestions that are
then passed on to a single-hop RC model. Partial
answers are used to arrive at an answer accord-
ing to the instructions provided by the template.
Some questions need further decomposition, and
the appropriate template will be chosen for the sub-

82

?

Pa
ss

ag
e

Q

1) Instructions to
decompose
question

2) Instructions to
assemble answer

Reasoning Templates

Final Answer

Single-hop RC
(e.g. BERTQA)

Decomposed
Questions & Passage

Partial
Answers

Further
Decomposition

Figure 2: Model Overview: Given a question, decom-
pose it into simpler questions according to a template
such that they can be answered by a single-hop RC
model, and assemble the final answer by applying the
operation associated with the template.

question.2

For the question decomposition component, our
approach closely follows and builds upon Decom-
pRC (Min et al., 2019), originally proposed for
multihop, multidocument question answering. We
repurpose the model for multihop arithmetic ques-
tions. DecompRC uses a two step approach to de-
compose questions. First, a pointer model is trained
to identify a key part of the question that is used to
formulate the sub-questions. Second, the predicted
pointers are used to procedurally change the origi-
nal question into two or three sub-questions. The
approach is defined for three types of questions:
Bridging, Intersection, and Comparison; each of
them uses a different pointer model and a different
heuristic procedure to generate the sub-questions.

In this paper, we propose the discrete reasoning
template framework and demonstrate its potential
by defining a single template: subtraction. We
describe in detail our approach in the following
subsections.

3.1 Question Decomposition
Question decomposition is a two-step process that
includes identifying relevant information in the text
of the original question (span extraction), and then
using those spans for heuristic generation of sub-
questions. The output of this step are simpler sub-
questions, see ‘q’ in Figure 1.

Span Extraction For subtraction questions, the
spans we are interested in identify two entities
whose associated values are to be subtracted. Con-
sider ‘0How 1many 2more 3households 4are 5there

2Further decomposition and template selection modules
are left for future research.

6than 7married 8couples 9living 10together11?’.
We need to extract the start and end indices of
the first entity households, and the start and end
indices of the second entity married couples living
together, which are [3, 3, 7, 10].

The pointer model is trained to predict 4 pointers,
the start and end indices of the first and second en-
tity respectively. Concretely, the model extracts 4
indices, p1 ≤ p2 ≤ p3 ≤ p4, that surround the two
spans of interest, maximizing the joint probability:

p1, · · · , p4 = argmax
{i1≤···≤i4}

4∏
j=1

P(ij = indj)

where P(ij = indj) = Yij is the probability that
the ith word is the jth index produced by the
pointer, and

Y = softmax(UW) ∈ Rn×4

where W is a learned weight matrix of size h× 4
and U is the contextualized embeddings of length h
produced by pre-trained BERT(Devlin et al., 2019)
of the n tokens in the original question:

U = BERT(S) ∈ Rn×h

We then train this model using cross entropy loss
until convergence.

Subquestion Generation We find that the sub-
questions needed in our approach have a high de-
gree of overlap with the original question, making
them amenable to heuristic decomposition as in
DecompRC (Min et al., 2019). While DecompRC
is defined for bridging, intersection and compar-
ison type questions, we extend it with a separate
procedure to handle subtraction type questions as
described below. We outline in Algorithm 1 how
subquestions can be generated for subtraction ques-
tions, given the pointers that have been predicted by
the previous step. The algorithm keeps words that
are common for both subquestions and then places
each of the entities in the center of the generated
questions. First, we chunk the original question
into parts using the pointers as in lines 2-6. In lines
7-9, we remove comparative adjectives and adverbs
from the first part. Before concatenating the differ-
ent parts again, we remove the extra words from
the middle part, utilizing the dependency parse of
the original question.

83

Algorithm 1: Subquestion generation for
subtraction questions

Data: Original question q: string, pointers P4: array
of length 4

Result: subquestions q1, q2: strings
1 dep parse= dependency parse(q);
2 part1← q[0:p1];
3 ent1←q[p1:p2 + 1];
4 middle←q[p2 + 1:p3];
5 ent2←q[p3:p4 + 1];
6 part2← q[p4 + 1:end];
7 for word in part1 do
8 if word.pos tag in [‘JJR’, ‘RBR’] then
9 remove word from part1;

10 head← dep parse.parent(ent2);
11 i← head.i;
12 prev i← i;
13 while (head in middle) AND (prev i-i ≤ 1) do
14 new head← dep parse.parent(head) ;
15 remove head from middle;
16 head← new head;
17 prev i← i;
18 i← head.i;
19 q1← part1+ent1+middle+part2;
20 q2← part1+ent2+middle+part2;

3.2 Single-hop question answering

Once we have decomposed questions into simpler,
single-hop questions, we can use the subquestions
to extract the appropriate operands for reasoning
from the passage. We opt to make use of a pre-
trained off-the-shelf single-span extraction model,
details provided in section 4. This is one possible
instantiation for the model, and we can use any
robust span-extraction model in its place.

3.3 Operation

A reasoning template includes instructions on how
to perform two main steps; the first step decom-
poses a question to simpler subquestions as we
have described in section 3.1. The second step,
operation, is designed to derive the final answer
given partial answers to decomposed questions. In
the case of subtraction, it is simply the absolute
difference between the two retrieved values, see
‘Op’ in Figure 1. In the case where a span retrieved
for a decomposed question contains more than a
single number, we use the first number in the span.

4 Experiments

We start with a single template to demonstrate our
approach: subtraction. Subtraction questions rely
on finding the difference between two numbers to
find the answer, they are usually in the form of

‘How many more..?’ or ‘How many fewer..?’.

Dataset For evaluation, we collect two sets of
subtraction questions from the DROP development
set. The first, clean, is a subset of 52 questions
curated by filtering the original dataset to find ques-
tions that contain words with ‘JJR’ or ‘RBR’ pos-
tags (comparative adjective and comparative ad-
verb respectively), and from those we randomly
sample 10 questions at a time and manually iden-
tify subtraction questions. We also annotate each
of these questions with gold decompositions, two
subquestions for each complex question. The other
evaluation set, noisy, is a larger dataset that has
been heuristically generated, this is intended to
support generalizability of results on the smaller
evaluation set. It contains 892 questions that have
been filtered using trigrams at the beginning of the
question: ‘How many more’ or ‘How many fewer’.

There are two learning components in our
pipeline: a pointer model to extract relevant en-
tities from the question and a single-hop RC model
to answer decomposed questions. For the latter, we
use an off-the-shelf pre-trained BERT (Devlin et al.,
2019) question answering model, which has been
fine-tuned on SQuAD (Rajpurkar et al., 2016), a
single-hop reading comprehension dataset. Specifi-
cally, we use the one provided by the huggingface
transformer library (Wolf et al., 2020). As for the
former, to train the pointer model we follow (Min
et al., 2019) and annotate 200 examples. The data
for this was gathered from the DROP training set
in the same way we curated the clean evaluation
set, for this step we simply identify the compared
entities and delimit them with ‘#’.

4.1 Results and Discussion

Evaluating Question Decomposition In Table 1
we report the accuracy of the pointer model on the
clean subtraction evaluation set, and in Table 2 we
measure the overlap between the resulting spans
and the annotated entities. While getting all point-
ers to match label succeeds for 73% of the data,
we note that the accuracy of each of the pointers is
much higher. We find that the pointer delimiting
the start of the first entity is seemingly the most
difficult to predict, which is also seen in lower F1
score for the first entity. We conjecture this to be
the likely case as the second entity is usually pre-
ceded by words such as ‘than’ or ‘compared to’.
We also measure the similarity between decom-

posed questions generated by our approach and the
manually annotated gold decompositions. Table 3

84

p1 p2 p3 p4 all

Acc 84.0± 0.9 88.5± 1.6 98.1 94.9± 0.9 73.1

Table 1: Accuracy of Pointer4 model, we list the accu-
racy of individual pointers separately and accuracy of
all pointers for each example. Results are reported as
an average of 3 runs of the model with different random
seeds.

First Entity Second Entity

F1 0.89± 0.02 0.97± 0.003
Precision 0.91± 0.018 0.96
Recall 0.90± 0.023 0.99± 0.006

Table 2: Measured overlap between resulting spans of
the predicted pointers and the annotated entities, aver-
aged over all questions in clean evaluation set.

displays the Word Mover’s Distance metric (Kus-
ner et al., 2015) and cosine similarity, based on
the GloVe word embeddings shipped with SpaCy’s
(Honnibal et al., 2020) en core web lg model.
For most questions, the two subquestions match
perfectly between the gold annotations and the gen-
erated ones. However, upon manual inspection, we
find that the generated subquestion might some-
times omit the final verb. This is because of our
traversal of the dependency parse in Algorithm 1.
We found BERTQA was robust to these differences
when extracting the related span from the passage.

Evaluating the Approach Table 4 shows the ac-
curacy of each of the models on the subtraction
evaluation sets. Since the result is a number, ac-
curacy is evaluated as an exact match between the
predicted answer and its label. We compare our
approach with the state-of-the-art; MTMSN (Hu
et al., 2019), the best performing model with spe-
cialized modules; and NeRd (Chen et al., 2020),
the most recent work based on program induc-
tion. These were evaluated on the original ques-
tions in subtraction evaluation set. For our work,
we evaluate two different variations: We run the
pipeline on the gold decompositions that have been
manually rewritten, and automatically-decomposed
questions generated by our approach, using BERT
single-hop RC described in section 4. For both
gold-decompositions and learned-decompositions
we get promising results that are on par with the
state-of-the-art on this dataset.

When investigating the mistakes that our ap-
proach makes on the clean set, we find that many

Similarity Measure q1 q2

WMDmax 3.56 4.43
WMDavg 0.2266 0.6714
WMDmedian 0.0 0.0
cos(θ)min 0.9538 0.9476
cos(θ)avg 0.9959 0.9913
cos(θ)median 1.0 1.0

Table 3: Reported similarities between manually de-
composed questions (gold) and decompositions gener-
ated by our approach. We use word mover’s distance
(WMD) and cosine similarity of average word embed-
dings. For the former we report max distance, while in
the latter we report min similarity as these highlight the
worst-case of all subquestions. For most examples, the
gold decompositions and generated subquestions over-
lap perfectly, as indicated by median score.

Model Accc Acc−c # MM Accn
So

TA MTMSN 86.5 89.4 3 81.3
NeRd 73 76.6 2 62.3

O
ur

s DecompG 78.8 85.1 1 -
DecompL 74.4± 2.4 79.9± 2.6 1 64

Table 4: Accuracy of models for subtraction questions.
We report accuracy on clean evaluation set (52 ques-
tions) in Accc, accuracy after omitting 5 mislabeled
questions in the second column (Acc−c) and specify
how many of these Mislabeled questions Match the pre-
diction in the #MM. The last column (Accn) reports
accuracy on the noisy evaluation set (892 questions).
Learned Decompositions (DecompL) are averaged over
3 random seeds in pointer model training.

of the mistakes are actually due to incorrect la-
bels. The gold answer (or label) does not match
the correct answer for a certain question. To vali-
date this, we check the entire clean evaluation set
and manually label each question. We find that 5
of the 52 questions are incorrectly annotated, one
of these questions is actually invalid as the infor-
mation needed to answer it does not exist in the
passage. To better understand the effect of this,
we discard incorrectly labeled examples and report
accuracy in the second column of Table 4. We
also report the number of predictions matching
the incorrect label. The primary set of true mis-
takes our model makes are due to some questions
needing further decomposition, eliciting common-
sense knowledge, or because they are not subtrac-
tion questions, i.e. can be classified as MTMSN’s
Negation rather than Diff module.

85

NeRd fails on 3 questions that MTMSN and our
approach got correctly because it could not pro-
duce a valid program to be evaluated. It also failed
on 2 of the Negation question that our approach
failed on, not because it was not able to address
those kinds of question, but because the attention
mechanism ignored a condition in the question
“18 or over”. Surprisingly, NeRd failed on both
questions that necessitate nested processing, even
though the architecture allows for compositionality.
The remaining failure cases are due to choosing
incorrect operands for the difference, but it is not
clear why the model made those choices.

Discussion We find that our approach is promis-
ing; it is interpretable and requires little training
data when compared to previous approaches, with-
out compromising performance. Steps to arrive at
an answer are explicit, and we can interpret each
of the retrieved operands by their associated sub-
questions. Figure 1 shows an example of this for
subtraction questions. MTMSN indicates which
module was used, but it does not show what led to
this particular choice of the arithmetic expression.
Likewise, NeRD shows the program necessary to
find the answer, but there is no indication on why
the operands of each function were chosen.

The only training data needed was a small subset
(200 examples) to train the pointer model, and in
the future we need some data to train reasoning
type classifier and other templates’ pointer mod-
els. This comes in contrast to the exhaustive search
needed to find all possible derivations to reach an
answer for all questions in the training set (77.4k
examples). Reasoning Templates retrieve operands
for the subtraction operation by answering sub-
questions that refer to a particular number, mak-
ing it more robust to noise in the annotation. We
started by focusing on the subtraction template,
because it is the most prevalent numerical reason-
ing type (with an estimated proportion of 29% of
all questions (Dua et al., 2019)). However, this
approach can be similarly extended to other reason-
ing types by defining a template for each, such as
date-difference or addition.

We believe that such reasoning templates would
be able to answer compositional questions with its
recursive decomposition component. While this
exploration is left for future research, we believe
it is useful it outline how we expect it to handle
compositionality. Recall from Figure 1 that in-
put questions are passed to a classifier that selects

which template to apply, one of the classes decides
if the question is single-span and should be passed
on to single-hop RC directly. Decomposed ques-
tions should also be passed through this classifier
to determine if they need further decomposition.

How	many	more	people	were	there
than	households	and	families?

How	many	people	were
there?

How	many	households
and	families	were

there?

subtraction template

addition templatesingle-span

How	many
households	
were	there?

How	many
families	
were	there?

single-span single-span

Figure 3: An example of how questions are further de-
composed to facilitate compositionality.

Figure 3 shows an example where the second
subquestion involves another reasoning task. After
further decomposing it to single-span extraction
questions and finding the solution to the addition
operation, that answer would be passed to the previ-
ous task. This recursive processing should ideally
allow for compositionality.

After building the entire pipeline we expect
mistakes like nested operations and mis-classified
Negation types to be rectified, boosting perfor-
mance further. One challenge we wish to overcome
is the engineering bottleneck involved in crafting
each of the templates. Future work would explore
methods that learn to construct these the templates.

5 Conclusion

We propose using Reasoning Templates for tack-
ling reading comprehension tasks that involve rea-
soning over multiple paragraphs. We show that this
approach is competitive with state of the art mod-
els on a subset of DROP’s subtraction questions,
while requiring much less training data and provid-
ing better visibility of the model’s decision making.
In future work, we plan on extending to further
templates and investigate how to learn templates
instead of working from a predefined set.

Acknowledgements

This research has been supported by a scholarship
from King Saud University. We thank our anony-
mous mentor and reviewers for their constructive
comments and suggestions.

86

References
Daniel Andor, Luheng He, Kenton Lee, and Emily

Pitler. 2019. Giving BERT a calculator: Finding op-
erations and arguments with reading comprehension.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5947–
5952, Hong Kong, China. Association for Computa-
tional Linguistics.

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny
Zhou, Dawn Song, and Quoc V. Le. 2020. Neural
symbolic reader: Scalable integration of distributed
and symbolic representations for reading compre-
hension. In International Conference on Learning
Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proc. of
NAACL.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2020. Neural module networks for
reasoning over text. In International Conference on
Learning Representations.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dong-
sheng Li. 2019. A multi-type multi-span network
for reading comprehension that requires discrete rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1596–1606, Hong Kong, China. Association for
Computational Linguistics.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos QA: Machine reading
comprehension with contextual commonsense rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2391–2401, Hong Kong, China. Association for
Computational Linguistics.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking be-
yond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kil-
ian Q. Weinberger. 2015. From word embeddings to
document distances. In Proceedings of the 32nd In-
ternational Conference on International Conference
on Machine Learning - Volume 37, ICML’15, page
957–966. JMLR.org.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Multi-hop reading compre-
hension through question decomposition and rescor-
ing. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 6097–6109, Florence, Italy. Association for
Computational Linguistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou, and Zhiyuan
Liu. 2019. NumNet: Machine reading comprehen-
sion with numerical reasoning. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2474–2484, Hong Kong,
China. Association for Computational Linguistics.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

http://doi.org/10.18653/v1/D19-1609
http://doi.org/10.18653/v1/D19-1609
http://openreview.net/forum?id=ryxjnREFwH
http://openreview.net/forum?id=ryxjnREFwH
http://openreview.net/forum?id=ryxjnREFwH
http://openreview.net/forum?id=ryxjnREFwH
http://doi.org/10.18653/v1/N19-1423
http://doi.org/10.18653/v1/N19-1423
http://doi.org/10.18653/v1/N19-1423
http://openreview.net/forum?id=SygWvAVFPr
http://openreview.net/forum?id=SygWvAVFPr
http://doi.org/10.5281/zenodo.1212303
http://doi.org/10.5281/zenodo.1212303
http://doi.org/10.5281/zenodo.1212303
http://doi.org/10.18653/v1/D19-1170
http://doi.org/10.18653/v1/D19-1170
http://doi.org/10.18653/v1/D19-1170
http://doi.org/10.18653/v1/D19-1243
http://doi.org/10.18653/v1/D19-1243
http://doi.org/10.18653/v1/D19-1243
http://doi.org/10.18653/v1/N18-1023
http://doi.org/10.18653/v1/N18-1023
http://doi.org/10.18653/v1/N18-1023
http://doi.org/10.18653/v1/P19-1613
http://doi.org/10.18653/v1/P19-1613
http://doi.org/10.18653/v1/P19-1613
http://doi.org/10.18653/v1/P18-2124
http://doi.org/10.18653/v1/P18-2124
http://doi.org/10.18653/v1/D16-1264
http://doi.org/10.18653/v1/D16-1264
http://doi.org/10.18653/v1/D19-1251
http://doi.org/10.18653/v1/D19-1251
http://doi.org/10.1162/tacl_a_00266
http://doi.org/10.1162/tacl_a_00266
http://www.aclweb.org/anthology/2020.emnlp-demos.6
http://www.aclweb.org/anthology/2020.emnlp-demos.6

87

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard-
ner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. 2020. Break it down: A question under-
standing benchmark. Transactions of the Associa-
tion for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A
dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).

A Experimental Settings

A.1 Model Settings

We use the final layer of BERTLARGE (Devlin et al.,
2019) to produce contextualized embeddings used
for span extraction fine-tuned to extract 4 pointers.3

We use Adam optimizer with learning rate of 5e−5
and warm-up over the first 10% steps to train. Loss
function is calculated with cross-entropy. Training
batch size is 20 examples. We train three models
with different random seeds and report average
performance over these.

A.2 SoTA Comparison

We report the accuracy of MTMSN (Hu et al.,
2019) and NeRd (Chen et al., 2020) on the two sub-
traction evaluation sets in Table 4. For MTMSN,
we use the pre-trained MTMSN LARGE model pub-
lished on their github page. Code and model check-
points for NeRd were shared in email communica-
tion with the authors in June, 2020.

B Evaluating on a larger dataset

We started evaluating this work on the smaller,
clean, dataset of 52 questions that has been man-
ually curated. To validate that this sample is rep-
resentative of subtraction questions in the DROP
devset, we worked to heuristically identify rele-
vant questions. We started with the same 2 steps
involved in the manual curation, filter the devset
(9536 questions) for questions that have ‘number’
as answer type (leaves 5850 questions) and contain
comparative adjectives or adverbs. This leaves us
with a subset of 1386 questions. The above condi-
tions cover more questions than we are interested
in, e.g. ‘How many people are 18 or older?’. We
refine the second condition to exclude sentences
where the JJR|RBR tokens are preceded with an
or, this omits 146 more samples. We proceed by

3We build upon the implementation of Min et al. (2019)

passing these through our pipeline. Below is a sum-
mary of failure cases of the different components
of our approach:

a. 1 sample did not produce valid pointers (used
[SEP] token which is BERT-specific).

b. 22 samples did not produce valid decomposi-
tion. This is due to issues in mismatching to-
kenization between the pointer model and the
subquestion generation function. The function
used to map pointers between the two tokenizers
did not generalize to the cases here. Examples
of these are [‘80’, ‘-’, ‘yard’] and [‘80-yard’].

c. 28 samples did not pass through BERTQA suc-
cessfully, as they exceeded the sequence length
(512).

Of the remaining 1189 questions that were pro-
cessed successfully, we get 55.9% correctly. This
still includes questions which are not covered by
our subtraction template. We proceed in two
ways: First, we filter out questions that MTMSN
predicted not to be addition subtraction.
This leaves 1106 questions with 59.3% accuracy.
The alternative is to filter questions based on their
start trigrams, which gives a more relevant set of
questions. Of the 1189 questions, 892 start with
the phrases ‘How many more’, ‘How many fewer’,
and ‘How many less’. Our model answers 64% of
these correctly.

http://github.com/huminghao16/MTMSN

