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Abstract
Copy module has been widely equipped in
the recent abstractive summarization models,
which facilitates the decoder to extract words
from the source into the summary. Generally,
the encoder-decoder attention is served as the
copy distribution, while how to guarantee that
important words in the source are copied re-
mains a challenge. In this work, we propose a
Transformer-based model to enhance the copy
mechanism. Specifically, we identify the im-
portance of each source word based on the de-
gree centrality with a directed graph built by
the self-attention layer in the Transformer. We
use the centrality of each source word to guide
the copy process explicitly. Experimental re-
sults show that the self-attention graph pro-
vides useful guidance for the copy distribution.
Our proposed models significantly outperform
the baseline methods on the CNN/Daily Mail
dataset and the Gigaword dataset.

1 Introduction

The explosion of information has expedited the
rapid development of text summarization technol-
ogy, which can help us to grasp the key points
from miscellaneous information quickly. There
are broadly two types of summarization methods:
extractive and abstractive. Extractive approaches
select the original text segments in the input to form
a summary, while abstractive approaches “create”
novel sentences based on natural language genera-
tion techniques.

In the past few years, recurrent neural networks
(RNNs) based architectures (Chopra et al., 2016;
Gu et al., 2016; Nallapati et al., 2016, 2017; See
et al., 2017; Zhou et al., 2017; Li et al., 2018b,a;
Zhu et al., 2019) have obtained state-of-the-art re-
sults for text summarization. Benefit from long-
term dependency and high scalability, transformer-
based networks have shown superiority over RNNs

∗Equal contribution.

Source:
two u.s. senators are blocking 11 of president barack
obama ’s nominees for senior administration posts at
the pentagon and justice department in protest over a
proposal to house guantanamo detainees at the fort
leavenworth prison in their midwestern home state of
kansas
Reference:
us senators bar obama nominees protest guantanamo
Transformer:
1 us senators block pentago justice nominees
Transformer + Copy:
us senators block 11 from pentago justice posts

Transformer + Guided Copy:
us senators block obama nominees over guantanamo

Top Words from Self-attention:
nominees, obama, senators, pentagon, guantanamo

Table 1: Yellow shades represent overlap with ref-
erence. The above summary generated by standard
copy mechanism miss some importance words, such as
“obama” and “nominees”.

on many NLP tasks, including machine transla-
tion (Vaswani et al., 2017; Dehghani et al., 2019),
sentence classification (Devlin et al., 2019; Cohan
et al., 2019), and text summarization (Song et al.,
2019; Zhang et al., 2019).

One of the most successful frameworks for
the summarization task is Pointer-Generator Net-
work (See et al., 2017) that combines extractive and
abstractive techniques with a pointer (Vinyals et al.,
2015) enabling the model to copy words from the
source text directly. Although, copy mechanism
has been widely used in summarization task, how
to guarantee that important tokens in the source are
copied remains a challenge. In our experiments,
we find that the transformer-based summarization
model with the copy mechanism may miss some
important words. As shown in Table 1, words like
“nominees” and “obama” are ignored by the stan-
dard copy mechanism. To tackle this problem, we
intend to get some clues about the importance of
words from the self-attention graph.
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We propose a Self-Attention Guided Copy mech-
anism (SAGCopy) that aims to encourage the sum-
marizer to copy important source words. Self-
attention layer in the Transformer (Vaswani et al.,
2017) builds a directed graph whose vertices rep-
resent the source words and edges are defined in
terms of the relevance score between each pair of
source words by dot-product attention (Vaswani
et al., 2017) between the query Q and the key K.
We calculate the centrality of each source words
based on the adjacency matrices. A straightfor-
ward method is using TextRank (Mihalcea and Ta-
rau, 2004) algorithm that assumes a word receiving
more relevance score from others are more likely
to be important. This measure is known as the in-
degree centrality. We also adopt another measure
assuming that a word sends out more relevance
score to others is likely to be more critical, namely
outdegree centrality, to calculate the source word
centrality.

We utilize the centrality score as guidance for
copy distribution. Specifically, we extend the dot-
product attention to a centrality-aware function.
Furthermore, we introduce an auxiliary loss com-
puted by the divergence between the copy distribu-
tion and the centrality distribution, which aims to
encourage the model to focus on important words.

Our contribution is threefold:

• We present a guided copy mechanism based
on source word centrality that is obtained by
the indegree or outdegree centrality measures.

• We propose a centrality-aware attention and a
guidance loss to encourage the model to pay
attention to important source words.

• We achieve state-of-the-art on the public text
summarization dataset.

2 Related Work

Neural network based models (Rush et al., 2015;
Nallapati et al., 2016; Chopra et al., 2016; Nallap-
ati et al., 2017; Zhou et al., 2017; Tan et al., 2017;
Gehrmann et al., 2018; Zhu et al., 2019; Li et al.,
2020b,a) achieve promising results for the abstrac-
tive text summarization. Copy mechanism (Gul-
cehre et al., 2016; Gu et al., 2016; See et al., 2017;
Zhou et al., 2018) enables the summarizers with
the ability to copy from the source into the tar-
get via pointing (Vinyals et al., 2015). Recently,
pre-training based methods (Devlin et al., 2019;

Radford et al., 2018) have attracted growing atten-
tion and achieved state-of-the-art performances in
many NLP tasks, and pre-training encoder-decoder
Transformers (Song et al., 2019; Dong et al., 2019;
Lewis et al., 2019; Xiao et al., 2020; Bao et al.,
2020) show great successes for the summarization
task. In this work, we explore the copy module
upon the Transformer-based summarization model.

3 Background

We first introduce the copy mechanism. In Pointer-
Generator Networks (PGNet) (See et al., 2017), the
source text x are fed into a bidirectional LSTM
(BiLSTM) encoder, producing a sequence of en-
coding hidden state h:

hi = BiLSTM(xi, hi−1) (1)

On each step t, a unidirectional LSTM decoder
receives the word embedding of the previous word
to produce decoder state s:

st = LSTM(st−1, yt−1, ct) (2)

where ct is a context vector generated based on the
attention distribution (Bahdanau et al., 2015):

et,i = vT tanh(Whhi +Wsst), (3)

αt = softmax(et) (4)

ct =
∑

i
αt,ihi (5)

The vocabulary distribution Pvocab over all
words in the target vocabulary is calculated as fol-
lows:

Pvocab(w) = softmax(Wast + Vact) (6)

By incorporating a generating-copying switch
pgen ∈ [0, 1], the final probability distribution of
the ground-truth target word yt is:

P (yt) = pgenPvocab(yt) + (1− pgen)Pcopy(yt)
(7)

pgen = sigmoid(wT
a ct + uTa st + vTa yt−1) (8)

Copy distribution Pcopy determines where to at-
tend in time step t. In the most previous work,
encoder-decoder attention weight αt is serves as
the copy distribution (See et al., 2017):

Pcopy(w) =
∑

i:xi=w
αt,i (9)

The loss function L is the average negative log
likelihood of the ground-truth target word yt for
each timestep t:

L = − 1

T

∑T

t=0
logP (yt) (10)
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Figure 1: The framework of our proposed model. Based on the encoder self-attention graph, we calculate the
centrality score for each source word to guide the copy module.

4 Model

In this section, we present our approach to enhance
the copy mechanism. First, we briefly describe
the Transformer model with the copy mechanism.
Then, we introduce two methods to calculate the
centrality scores for the source words based on the
encoder self-attention layer. Finally, we incorpo-
rate the centrality score into the copy distribution
and the loss function. The framework of our model
is shown in Figure 1.

4.1 Transformer with the Copy Mechanism

Scaled dot-product attention (Vaswani et al., 2017)
is widely used in self-attention networks:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (11)

where dk is the number of columns of query matrix
Q, key matrix K and value matrix V .

We take the encoder-decoder attentions in the
last decoder layer as the copy distribution:

αt,i = softmax(
(Wsst)

TWhhi√
dk

) (12)

Note that for the multi-head attention, we obtain
the copy distributions with the sum of multiple
heads.

4.2 Self-Attention-Based Centrality

We introduce two approaches, i.e., indegree cen-
trality and outdegree centrality, to calculate the
centrality score for each source word based on the
last encoder self-attention layer of the Transformer.

Centrality approaches are proposed to inves-
tigates the importance of nodes in social net-
works (Freeman, 1978; Bonacich, 1987; Borgatti
and Everett, 2006; Kiss and Bichler, 2008; Li et al.,
2011). Degree centrality is one of the simplest
centrality measures that can be distinguished as
indegree centrality and outdegree centrality (Free-
man, 1978), which are determined based on the
edges coming into and leaving a node, respectively.

Indegree centrality of a word is proportional
to the number of relevance scores incoming from
other words, which can be measured by the sum
of the indegree scores or by graph-based extrac-
tive summarization methods (Mihalcea and Tarau,
2004; Erkan and Radev, 2004; Zheng and Lapata,
2019).

Outdegree centrality of a word is proportional
to the number of relevance scores outgoing to other
words, which can be computed by the sum of the
outdegree scores.

Formally, let G = (V,D) be a directed graph
representing self-attention, where vertices V is the
word set and edge Di,j is represented by the en-
coder self-attention weight from the word xi to the
word xj , where

∑
iDi,j = 1. Next, we introduce

the approaches to calculate the word centrality with
the graph G.

We first construct a transition probability matrix
T as follows:

Ti,j = Di,j/
∑

j
Di,j . (13)

A basic indegree centrality is defined as:

scorei =
∑

j
Tj,i (14)
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Alternatively, TextRank (Mihalcea and Tarau,
2004) that is inspired by PageRank algorithm (Page
et al., 1999) calculates indegree centrality of the
source words iteratively based on the Markov
chain:

scorei =
∑

j
Tj,i · scorej (15)

where scorei is indegree centrality score for vertex
Vi with initial score set to 1/|V |. We can get a
stationary indegree centrality distribution by com-
puting score = T · score iteratively, and we take
at most three iterations in our implementation.

Outdegree centrality measures how much a word
i contributes to other words in the directed graph:

scorei =
∑

j
Di,j (16)

Next, we incorporate the source word centrality
score into the decoding process.

4.3 Guided Copy Mechanism
The motivation is that word centrality indicates the
salience of the source words, which can provide
the copy prior knowledge that can guide the copy
module to focus on important source words.

We use word centrality score as an extra input to
calculate the copy distribution as follows:

αt,i = softmax(
(Wsst)

T (Whhi + wpscorei)√
dk

)

(17)

where scorei is the indegree or outdegree centrality
score for the i-th word in source text. The above
implementation can be referred to as centrality-
aware dot-product attention.

Moreover, we expect that important source
words can draw enough encoder-decoder attention.
Thus, we adopt a centrality-aware auxiliary loss to
encourage the consistency between the overall copy
distribution and the word centrality distribution
based on the Kullback-Leibler (KL) divergence:

L = − 1

T

∑
t
logP (yt)+λKL(

1

T

∑
t
αt, score)

(18)

5 Experiments

5.1 Experimental Setting
We evaluate our model in CNN/Daily Mail
dataset (Hermann et al., 2015) and Gigaword
dataset (Rush et al., 2015). Our experiments are

conducted with 4 NVIDIA P40 GPU. We adopt 6
layer encoder and 6 layers decoder with 12 atten-
tion heads, and hmodel = 768. Byte Pair Encoding
(BPE) (Sennrich et al., 2016) word segmentation
is used for data pre-processing. We warm-start
the model parameter with MASS pre-trained base
model1 and trains about 10 epoches for conver-
gence. During decoding, we use beam search with
a beam size of 5.

5.2 Experimental Results

We compare our proposed Self-Attention Guided
Copy (SAGCopy) model with the following com-
parative models.

Lead-3 uses the first three sentences of the arti-
cle as its summary.

PGNet (See et al., 2017) is the Pointer-
Generator Network.

Bottom-Up (Gehrmann et al., 2018) is a
sequence-to-sequence model augmented with a
bottom-up content selector.

MASS (Song et al., 2019) is a sequence-to-
sequence pre-trained model based on the Trans-
former.

ABS (Rush et al., 2015) relies on an CNN en-
coder and a NNLM decoder.

ABS+ (Rush et al., 2015) enhances the ABS
model with extractive summarization features.

SEASS (Zhou et al., 2017) controls the informa-
tion flow from the encoder to the decoder with the
selective encoding strategy.

SeqCopyNet (Zhou et al., 2018) extends the
copy mechanism that can copy sequences from
the source.

We adopt ROUGE (RG) F1 score (Lin, 2004) as
the evaluation metric. As shown in Table 2 and Ta-
ble 3, SAGCopy with both outdegree and indegree
centrality based guidance significantly outperform
the baseline models, which prove the effectiveness
of self-attention guided copy mechanism. The ba-
sic indegree centrality (indegree-1) is more favor-
able, considering the ROUGE score and computa-
tion complexity.

Besides ROUGE evaluation, we further investi-
gate the guidance from the view of the loss func-
tion. For each sample in the Gigaword test set, we
measure the KL divergence between the centrality
score and the copy distribution, and we calculate
the ROUGE-1 and ROUGE-2 scores. Figure 2
demonstrates that lower KL divergence yields a

1https://github.com/microsoft/MASS
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Models RG-1 RG-2 RG-L
Lead-3* 40.34 17.70 36.57
PGNet* 39.53 17.28 36.38
Bottom-Up* 41.22 18.68 38.34
MASS 41.38 19.11 38.42
MASS+Copy 41.71 19.41 38.66
SAGCopy Outdegree 42.53 19.92 39.44
SAGCopy Indegree-1 42.30 19.75 39.23
SAGCopy Indegree-2 42.56 19.89 39.40
SAGCopy Indegree-3 42.34 19.72 39.29

Table 2: ROUGE F1 scores on the CNN/Daily Mail
dataset. Results with * mark are taken from the corre-
sponding papers. Indegree-i denote indegree central-
ity obtained by TextRank with i-iteration. Note that
Indegree-1 is the basic indegree centrality that is equiv-
alent to TextRank with 1-iteration.

Models RG-1 RG-2 RG-L
ABS* 29.55 11.32 26.42
ABS+* 29.76 11.88 26.96
SEASS* 36.15 17.54 33.63
SeqCopyNet* 35.93 17.51 33.35
MASS* 38.73 19.71 35.96
MASS+Copy 38.53 19.93 35.86
SAGCopy Outdegree 38.86 19.91 36.06
SAGCopy Indegree-1 38.84 20.39 36.27
SAGCopy Indegree-2 38.70 20.16 36.09
SAGCopy Indegree-3 38.69 19.83 35.98

Table 3: Experimental result on the Gigaword dataset.

higher ROUGE score, showing that our loss func-
tion is reasonable.

Additionally, we visualize the self-attention
weights learned from our model in Figure 3, which
demonstrates the guidance process.

5.3 Human Evaluation

We conduct human evaluations to measure the
quantify of the summaries for importance and read-
ability.

We randomly selected 100 samples from the Gi-
gaword test set. The annotators are required to
give a comparison between two model summaries
that are presented anonymously. The results in
Table 4 show that SAGCopy significantly outper-
forms MASS+Copy in terms of Importance and is
comparative in terms of Readability.

Win Loss Tie kappa
Importance 20.67% 13.67% 65.67% 0.473
Readability 6.67% 3.67% 89.67% 0.637

Table 4: Human evaluation results on the Gigaword
dataset. “Win” denotes the generated summary of SAG-
Copy is better than that of MASS+Copy. We evaluate
the agreement by Fleiss’ kappa (Fleiss, 1971).
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Figure 2: KL divergence with ROUGE F1 in the Gi-
gaword test set for SAGCopy Indegree-1 model. Each
point in the above plots represents an sample. The bot-
tom plots show the average ROUGE score for different
KL values.
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Figure 3: The guidance process for SAGCopy Inde-
gree model, showing that the keyword “northern” is
correctly copied for our model.

6 Conclusion

In this paper, we propose the SAGCopy summariza-
tion model that acquires guidance signals for the
copy mechanism from the encoder self-attention
graph. We first calculate the centrality score for
each source word. Then, we incorporate the impor-
tance score into the copy module. The experimental
results show the effectiveness of our model. For
future work, we intend to apply our method to other
Transformer-based summarization models.
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